Design of a Gas Sensor for Hydrazines Based on Photo-Ionization Principle

2010 ◽  
Vol 44-47 ◽  
pp. 2050-2054
Author(s):  
Jun Liu ◽  
Qiu Lin Tan ◽  
Chen Yang Xue ◽  
Ji Jun Xiong

Based on the photo ionization principle, a gas sensor for the hydrazine is designed. The photo ionization gas sensor can also measure other volatile organic compounds and other gases in concentrations from sub parts per billion to 10000 parts per million (ppm). This gas sensor is the most efficient and inexpensive type of gas sensor. They are capable of giving real-time readings and monitoring continuously. The design of micro ionization chamber, signal detection circuits and installation technology is expatiated in detail. Through researching the design of cell structure, the cell with integration and miniaturization has been devised. By taking Single-Chip Microcomputer (SCM) as intelligence handling, the functional block diagram of gas detection system is designed with the analyzing and devising of its hardware and software system. Experiment results show that the gas sensor has reached the technology requirement of portable, mini-volume, high accuracy, fast response, continuous test, and is able to apply in detecting the organic gases. Therefore, the photo ionization sensor has a promising future for the hydrazines gas and volatile organic compounds detection.

2014 ◽  
Vol 6 (3) ◽  
pp. 886-892 ◽  
Author(s):  
Qingfeng Zhai ◽  
Bin Du ◽  
Rui Feng ◽  
Weiying Xu ◽  
Qin Wei

2018 ◽  
Vol 29 (28) ◽  
pp. 285501 ◽  
Author(s):  
Qiankun Zhang ◽  
Chunhua An ◽  
Shuangqing Fan ◽  
Sigang Shi ◽  
Rongjie Zhang ◽  
...  

2020 ◽  
Vol 1 (7) ◽  
pp. 2368-2379
Author(s):  
N. Lavanya ◽  
G. Veerapandi ◽  
S. G. Leonardi ◽  
N. Donato ◽  
G. Neri ◽  
...  

A novel pseudo spin-ladder CaCu2O3 compound (2-leg) based conductometric gas sensor has been proposed, for the first time, for the detection of volatile organic compounds (VOCs); (a) the proposed reaction mechanism in air, and (b) in the presence of acetone and ethanol.


Talanta ◽  
2020 ◽  
Vol 211 ◽  
pp. 120701 ◽  
Author(s):  
E. Oleneva ◽  
T. Kuchmenko ◽  
E. Drozdova ◽  
A. Legin ◽  
D. Kirsanov

2020 ◽  
Vol MA2020-01 (28) ◽  
pp. 2153-2153
Author(s):  
Binayak Ojha ◽  
Divyashree Narayana ◽  
Margarita Aleksandrova ◽  
Heinz Kohler ◽  
Matthias Schwotzer ◽  
...  

2011 ◽  
Vol 89 (3) ◽  
pp. 186-192 ◽  
Author(s):  
Gaik Tin Ang ◽  
Geik Hoon Toh ◽  
Mohamad Zailani Abu Bakar ◽  
Ahmad Zuhairi Abdullah ◽  
Mohd Roslee Othman

1997 ◽  
Vol 1997 (1) ◽  
pp. 323-327
Author(s):  
Jonathan A. McSayles ◽  
Isabel E. Caputa ◽  
Peter A. Tennant

ABSTRACT The Organics Detection System (ODS) is a spill detection network cooperatively operated by the Ohio River Valley Water Sanitation Commission (ORSANCO), 11 water utilities, and 3 industries at strategic locations along the Ohio, Allegheny, Monongahela, and Kanawha rivers. The ODS uses purge and trap gas chromatography to analyze for 20 volatile organic compounds (US EPA, 1986). Since its inception in 1977, the network has undergone several advancements in its ability to monitor, analyze, and detect volatile organic compounds in the Ohio River. The present instrumentation used in the network was purchased from 1986 through 1990. The network's capabilities have progressed to the monitoring of raw intake water 24 hours a day, 7 days a week and processing raw data with computers. The most noticeable advance has been in the use of computers to manipulate chromatograms, generate final reports, and transfer information. Additionally, computers and modems have enhanced communication between ORSANCO and ODS locations by accelerating the dissemination of information to downstream water users, allowing the observation of chromatograms and general troubleshooting. New technology under consideration includes the ability to remotely control a gas Chromatograph, incorporate automated check samples, and control alarm settings and the notification of such alarms. The ideal system would run independently until one of two conditions occurred—a compound exceeded the alarm threshold, or there was an instrument malfunction.


2015 ◽  
Vol 13 (8) ◽  
pp. 702-705
Author(s):  
Na-Rae Yoon ◽  
Jae-Sung Lee ◽  
Byoung-Ho Kang ◽  
Sang-Won Lee ◽  
Hyeon-Ji Yun ◽  
...  

2011 ◽  
Vol 119 (1395) ◽  
pp. 884-889 ◽  
Author(s):  
Min-Hyun SEO ◽  
Masayoshi YUASA ◽  
Tetsuya KIDA ◽  
Yuich KANMURA ◽  
Jeung-Soo HUH ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document