Simulation of Particle Reinforced Composite Materials in Macro- and Meso-Scales

2013 ◽  
Vol 444-445 ◽  
pp. 37-44 ◽  
Author(s):  
Jun Guo ◽  
Ran Guo ◽  
Wen Hai Gai

A simulation method of macro-and meso-scales is developed for particle reinforce composite materials. The two-scale modeling based on homogenization theory enables to formulate the macro scale problem with Finite Element Method (FEM), while the meso-scale one with Voronoi Cell Finite Element Method (VCFEM). Dangerous regions are identified in macro scale computing period, which lately be meshed into Voronoi Cells in meso-scale period to get a more accurate solution. Representative numerical examples are presented to demonstrate the capability of the proposed two-scale analysis method of particulate reinforce composite materials.

2018 ◽  
Vol 153 ◽  
pp. 06006
Author(s):  
Jiatong Ye ◽  
Hua Huang ◽  
Chenchen He ◽  
Guangyuan Liu

In this paper, a finite element model of membrane air spring in the vehicle is established, and its vertical stiffness characteristics under a certain inflation pressure are analysed. The result of finite element simulation method is compared with the result of the air spring bench test. The accuracy and reliability of the finite element simulation method in nonlinear analysis of air spring system are verified. In addition, according to the finite element method, the influence of the installation of the air spring limit sleeve on its stiffness is verified.


2021 ◽  
pp. 105678952110405
Author(s):  
Young Kwang Hwang ◽  
Suyeong Jin ◽  
Jung-Wuk Hong

In this study, an effective numerical framework for fracture simulations is proposed using the edge-based smoothed finite element method (ES-FEM) and isotropic damage model. The duality between the Delaunay triangulation and Voronoi tessellation is utilized for the mesh construction and the compatible use of the finite element solution with the Voronoi-cell lattice geometry. The mesh irregularity is introduced to avoid calculating the biased crack path by adding random variation in the nodal coordinates, and the ES-FEM elements are defined along the Delaunay edges. With the Voronoi tessellation, each nodal mass is calculated and the fractured surfaces are visualized along the Voronoi edges. The rotational degrees of freedom are implemented for each node by introducing the elemental formulation of the Voronoi-cell lattice model, and the accurate visualizations of the rotational motions in the Voronoi diagram are achieved. An isotropic damage model is newly incorporated into the ES-FEM formulation, and the equivalent elemental length is introduced with an additional geometric factor to simulate the consistent softening behaviors with reducing the mesh sensitivity. The full matrix form of the smoothed strain-displacement matrix is constructed for optimal use in the element-wise computations during explicit time integration, and parallel computing is implemented for the enhancement of the computational efficiency. The simulated results are compared with the theoretical solutions or experimental results, which demonstrates the effectiveness of the proposed methodology in the simulations of the quasi-brittle fractures.


2014 ◽  
Vol 941-944 ◽  
pp. 2332-2335 ◽  
Author(s):  
Min Zhang ◽  
Chuan Zhen Huang ◽  
Yu Xi Jia ◽  
Jin Long Liu

Considering the extrudate swell, the polymer extrusion process was calculated by the inversed simulation based on the visco-elastic ecology theory. The fluid characteristics of the polymer melt were described by the Phan-Thien and Tanner (PTT) model. The Finite Element Method was used. Based on the simulation data, the extrusion die lips were analyzed. So it is feasible to design the polymer extrusion die lips using inversed simulation method.


Sign in / Sign up

Export Citation Format

Share Document