Dynamic Stability Analysis of the Tower Structure of Construction Elevators

2013 ◽  
Vol 459 ◽  
pp. 646-649
Author(s):  
Xian Rong Qin ◽  
Ying Hong ◽  
Peng Yue ◽  
Qing Zhang ◽  
Yuan Tao Sun

This paper proposed a method of dynamic stability analysis for the tower structure of construction elevators based on dynamic eigenvalue method. The method employed the time frozen formulation to model the problem, and the stress field from transient analysis was utilized to simulate the pre-stress effect of buckling analysis. The proposed method was applied to estimate the dynamic stability of the tower structure of construction elevators under moving loads, and the results suggest that high coefficients of lateral load and inclined tower structure will dramatically reduce the stability of the elevator in the construction process.

2021 ◽  
Vol 11 (8) ◽  
pp. 3663
Author(s):  
Tianlong Lei ◽  
Jixin Wang ◽  
Zongwei Yao

This study constructs a nonlinear dynamic model of articulated vehicles and a model of hydraulic steering system. The equations of state required for nonlinear vehicle dynamics models, stability analysis models, and corresponding eigenvalue analysis are obtained by constructing Newtonian mechanical equilibrium equations. The objective and subjective causes of the snake oscillation and relevant indicators for evaluating snake instability are analysed using several vehicle state parameters. The influencing factors of vehicle stability and specific action mechanism of the corresponding factors are analysed by combining the eigenvalue method with multiple vehicle state parameters. The centre of mass position and hydraulic system have a more substantial influence on the stability of vehicles than the other parameters. Vehicles can be in a complex state of snaking and deviating. Different eigenvalues have varying effects on different forms of instability. The critical velocity of the linear stability analysis model obtained through the eigenvalue method is relatively lower than the critical velocity of the nonlinear model.


2020 ◽  
Vol 10 (22) ◽  
pp. 8203 ◽  
Author(s):  
Jorge Alvarez ◽  
Mikel Zatarain ◽  
David Barrenetxea ◽  
Jose Ignacio Marquinez ◽  
Borja Izquierdo

An alternative method is devised for calculating dynamic stability maps in cylindrical and centerless infeed grinding processes. The method is based on the application of the Floquet theorem by repeated time integrations. Without the need of building the transition matrix, this is the most efficient calculation in terms of computation effort compared to previously presented time-domain stability analysis methods (semi-discretization or time-domain simulations). In the analyzed cases, subspace iteration has been up to 130 times faster. One of the advantages of these time-domain methods to the detriment of frequency domain ones is that they can analyze the stability of regenerative chatter with the application of variable workpiece speed, a well-known technique to avoid chatter vibrations in grinding processes so the optimal combination of amplitude and frequency can be selected. Subspace iteration methods also deal with this analysis, providing an efficient solution between 27 and 47 times faster than the abovementioned methods. Validation of this method has been carried out by comparing its accuracy with previous published methods such as semi-discretization, frequency and time-domain simulations, obtaining good correlation in the results of the dynamic stability maps and the instability reduction ratio maps due to the application of variable speed.


2012 ◽  
Vol 446-449 ◽  
pp. 1199-1202
Author(s):  
Yan Jiang Chen ◽  
Xiao Qiang Ren ◽  
Jin Jie Wang ◽  
Da Peng Gu

Abstract. This paper lists the problems during the stability analysis of long span CFST arch bridge and the corresponding modeling method. Based on the construction control of an orthotropic long span CFST arch bridge, a FEM model had been established to analysis the stability of its rib during the concrete pumping. The conclusion shows significant importance to the bridge’s construction process.


2013 ◽  
Vol 477-478 ◽  
pp. 592-595
Author(s):  
Xian Guang Ni

We established the computational mode for defective piles based on practical engineering problems,and studied the stability of the defective pile in the heterogeneous soil under vertical harmonic loads. We established the dynamical function based on the principle of Energy and Hamilton, and abtained the expressions of critical frequency of defective piles.The results show that, the instability of the defective piles relate to the degree of defect and the location of defect.


Author(s):  
Tsukasa Ohshima ◽  
Yoshihiko Sugiyama

This paper deals with dynamic stability of a slender launch vehicle subjected to aerodynamic loads and an end rocket thrust. The flight vehicle is simplified into a uniform free-free beam subjected to an end follower thrust. Two types of aerodynamic loads are assumed in the stability analysis. Firstly, it is assumed that two concentrated aerodynamic loads act on the flight body at its nose and tail. Secondly, to take account of effect of unsteady flow due to motion of a flexible flight body, aerodynamic load is estimated by the slender body approximation. Extended Hamilton’s principle is applied to the considered beam for deriving the equation of motion. Application of FEM yields standard eigen-value problem. Dynamic stability of the beam is determined by the sign of the real part of the complex eigen-values. If aerodynamic loads are concentrated loads that act on the flight body at its nose and tail, the flutter thrust decreases by about 10% in comparison with the flutter thrust of free-free beam subjected only to an end follower thrust. If aerodynamic loads are distributed along the longitudinal axis of the flight body, the flutter thrust decreases by about 70% in comparison with the flutter thrust of free-free beam under an end follower thrust. It is found that the flutter thrust is reduced considerably if the aerodynamic loads are taken into account in addition to an end rocket thrust in the stability analysis of slender rocket vehicle.


Author(s):  
Hammam O. Zeitoun ◽  
Knut To̸rnes ◽  
John Li ◽  
Simon Wong ◽  
Ralph Brevet ◽  
...  

Several design approaches can be used to analyse the stability of subsea pipelines [1]. These design approaches vary in complexity and range between simple force-balance calculations to more comprehensive dynamic finite element simulations. The latter may be used to more accurately simulate the dynamic response of subsea pipelines exposed to waves and steady current kinematics, and can be applied to optimise pipeline stabilisation requirements. This paper describes the use of state-of-the-art transient dynamic finite elements analysis techniques to analyse pipeline dynamic response. The described techniques cover the various aspects of dynamic stability analysis, including: • Generation of hydrodynamic forces on subsea pipelines resulting from surface waves or internal waves. • Modelling of pipe-soil interaction. • Modelling of pipeline structural response. The paper discusses the advantages of using dynamic stability analysis for assessing the pipeline response, presents advanced analysis and modelling capabilities which have been applied and compares this to previously published knowledge. Further potential FE applications are also described which extends the applicability of the described model to analyse the pipeline response to a combined buckling and stability problem or to assess the dynamic response of a pipeline on a rough seabed.


Author(s):  
Andreas Rauch ◽  
William Singhose ◽  
Daichi Fujioka ◽  
Taft Jones

Mobile boom cranes are used throughout the world to perform important and dangerous manipulation tasks. The usefulness of these cranes is greatly improved if they can utilize their mobile base when they lift and transfer a payload. However, crane motion induces payload swing. The tip-over stability is degraded by the payload oscillations. This paper presents a process for conducting a stability analysis of such cranes. As a first step, a static stability analysis is conducted to provide basic insights into the effects of the payload weight and crane configuration. Then, a semi-dynamic method is used to account for payload swing. The results of a full-dynamic stability analysis using a multibody simulation of a boom crane are then compared to the outcomes of the simpler approaches. The comparison reveals that the simple semi-dynamic analysis provides good approximations for the tip-over stability properties. The results of the stability analyses are verified by experiments. The analysis in this paper provides useful guidance for the practical tip-over stability analysis of mobile boom cranes and motivates the need to control payload oscillation.


In this paper, the switching of dc-dc converter using voltage/current digital control is proposed. It is the combination of existed digital average voltage and digital average current controls. The stability analysis of V/C digital controlled dc-dc converter is derived by using sampled data model. The transient analysis of V/C digital controlled dc-dc converter is also derived by using z-domain small signal model. The proposed V/C digital controlled dc-dc converter has over current protection, fast load transient response, no sub-harmonic oscillations at any value of duty cycle, and wider stability range. The proposed system is analysed with a simple buck converter. The output voltage and inductor current weighting factors influence the stability boundary and transient performances of V/C digital controlled dc-dc converter. The stability analysis and transient analysis is investigated and verified by circuit simulations


SPE Journal ◽  
2020 ◽  
Vol 25 (06) ◽  
pp. 3332-3348
Author(s):  
Haining Zhao ◽  
Hongbin Jing ◽  
Zhengbao Fang ◽  
Hongwei Yu

Summary On the basis of a previously published reduced-variables method, we demonstrate that using these reduced variables can substantially accelerate the conventional successive-substitution iterations in solving two-phase flash (TPF) problems. By applying the general dominant eigenvalue method (GDEM) to the successive-substitution iterations in terms of the reduced variables, we obtained a highly efficient solution for the TPF problem. We refer to this solution as Reduced-GDEM. The Reduced-GDEM algorithm is then extensively compared with more than 10 linear-acceleration and Newton-Raphson (NR)-type algorithms. The initial equilibrium ratio for flash calculation is generated from reliable phase-stability analysis (PSA). We propose a series of indicators to interpret the PSA results. Two new insights were obtained from the speed comparison among various algorithms and the PSA. First, the speed and robustness of the Reduced-GDEM algorithm are of the same level as that of the reduced-variables NR flash algorithm, which has previously been proved to be the fastest flash algorithm. Second, two-side phase-stability-analysis results indicate that the conventional successive-substitution phase-stability algorithm is time consuming (but robust) at pressures and temperatures near the stability-test limit locus in the single-phase region and near the spinodal in the two-phase region.


2014 ◽  
Vol 577 ◽  
pp. 1146-1149
Author(s):  
Si Cheng Zhong ◽  
Kun Yong Zhang ◽  
Fang Qing Tang ◽  
Xiong Bing Zhang

On the basis of field investigation, the stability of the slope was calculated by GEO-SLOPE considering several different influence factors. After comparing these calculated safety factors, the reason for the failure slope was found out. Then, combined with the construction process, a comprehensive evaluation was given to this slope about the reason for slope failure. It was put forward the corresponding management measures according to the main reason.


Sign in / Sign up

Export Citation Format

Share Document