The Stability Analysis for One Failure Slope

2014 ◽  
Vol 577 ◽  
pp. 1146-1149
Author(s):  
Si Cheng Zhong ◽  
Kun Yong Zhang ◽  
Fang Qing Tang ◽  
Xiong Bing Zhang

On the basis of field investigation, the stability of the slope was calculated by GEO-SLOPE considering several different influence factors. After comparing these calculated safety factors, the reason for the failure slope was found out. Then, combined with the construction process, a comprehensive evaluation was given to this slope about the reason for slope failure. It was put forward the corresponding management measures according to the main reason.

2020 ◽  
Vol 2 (1) ◽  
pp. 44-57
Author(s):  
Lianheng Zhao ◽  
Nan Qiao ◽  
Zhigang Zhao ◽  
Shi Zuo ◽  
Xiang Wang

Abstract The upper bound limit analysis (UBLA) is one of the key research directions in geotechnical engineering and is widely used in engineering practice. UBLA assumes that the slip surface with the minimum factor of safety (FSmin) is the critical slip surface, and then applies it to slope stability analysis. However, the hypothesis of UBLA has not been systematically verified, which may be due to the fact that the traditional numerical method is difficult to simulate the large deformation. In this study, in order to systematically verify the assumption of UBLA, material point method (MPM), which is suitable to simulate the large deformation of continuous media, is used to simulate the whole process of the slope failure, including the large-scale transportation and deposition of soil mass after slope failure. And a series of comparative studies are conducted on the stability of cohesive slopes using UBLA and MPM. The proposed study indicated that the slope angle, internal friction angle and cohesion have a remarkable effect on the slip surface of the cohesive slope. Also, for stable slopes, the calculation results of the two are relatively close. However, for unstable slopes, the slider volume determined by the UBLA is much smaller than the slider volume determined by the MPM. In other words, for unstable slopes, the critical slip surface of UBLA is very different from the slip surface when the slope failure occurs, and when the UBLA is applied to the stability analysis of unstable slope, it will lead to extremely unfavorable results.


2020 ◽  
Vol 156 ◽  
pp. 02005
Author(s):  
Hanafi ◽  
Hendri Gusti Putra ◽  
Andriani

In August 2010, there was a landslide on the down-slope of national road section at Km 31+800 Lubuk Selasih – Padang City Border. In order to prevent further damage, it was necessary to make an immediate repair by constructing a gabion retaining wall. Since this repair was so urgent, physical and mechanical soil parameters for the stability analysis were determined from literature data. The stability analysis considered dangers of overturning, sliding, and soil bearing capacity. For the sliding stability analysis, the value for friction considered only the interaction between the soil and the base of the retaining wall, with the assumption that the contact area was equal to the total area of the entire base of the retaining wall. After the construction was completed, sliding failure occured due to pressure from the backfill embankment. This research performs a reanalysis of the retaining wall stability using soil and gabion parameters determined from field investigation and laboratory testing. In this reanalysis the friction contact area was assumed to be between the soil and the wire mesh of retaining wall. With these parameters and assumption, the main cause of sliding failure became clear, indicating that this approach increased the accuracy of stability analysis for gabion retaining walls.


Author(s):  
Rizki Ramadhan ◽  
Munirwansyah Munirwansyah ◽  
Munira Sungkar

The Aceh Tengah / Gayo Lues-Blangkejeren road segment (N.022) Km 438 + 775 is one of the Central Cross National Roads in the Province of Aceh, which often experiences landslides due to being in hilly areas. Landslides that occur in these locations are caused by scouring of road runoff, lack of optimal drainage and the absence of outlets for drainage and soil layers under asphalt pavement consisting of loose material. Therefore, a slope reinforcement study with Counterfort type retaining wall is needed. This study aims to analyze slope stability by obtaining safety factor numbers and identifying slope failure patterns. Analysis was carried out to obtain safety factors and slope failure patterns by using 2D Plaxis and slice methods. The calculation of safety factors for Counterfort type retaining walls is done manually. The input soil parameters used are dry volume weight (gd), wet volume weight (gw), permeability (k), modulus young (Eref), paisson's ratio (υ), shear angle (f), cohesion (c) . The results of slope stability analysis on the existing conditions using the Plaxis program and the slice method with radius (r) 65.06 meters found that safety factors were 1.038 and 1.079 with unsafe slope conditions (FK <1.25). The results of the analysis after reinforced counterfort and minipile type retaining wall with a length of 12 meters found 1,268 safety factor numbers with unsafe slope conditions (FK <1,5). Thus, additional reinforcement is needed by using anchor on the counterfort. The results of slope stability analysis after reinforced counterfort, minipile and anchor type retaining walls with a length of 20 meters and a slope of 30 ° were obtained with a safety factor number of 1.513 with safe slope conditions (SF> 1.5).ABSTRAKRuas jalan batas Aceh Tengah/Gayo Lues-Blangkejeren (N.022) Km 438+775 merupakan salah satu ruas jalan Nasional Lintas Tengah Provinsi Aceh, yang sering mengalami terjadi tanah longsor karena berada di daerah perbukitan. Longsoran yang terjadi pada lokasi tersebut disebabkan oleh gerusan air limpasan permukaan jalan, kurang optimalnya drainase dan tidak adanya outlet untuk pembuangan air serta lapisan tanah di bawah perkerasan aspal terdiri dari material lepas. Oleh karena itu, diperlukan kajian perkuatan lereng dengan dinding penahan tanah tipe Counterfort. Kajian ini bertujuan untuk menganalisis stabilitas lereng dengan mendapatkan angka faktor keamanan dan mengidentifikasi pola keruntuhan lereng. Analisis dilakukan untuk mendapatkan faktor keamanan dan pola keruntuhan lereng yaitu dengan menggunakan program Plaxis 2D dan metode irisan. Perhitungan faktor keamanan untuk dinding penahan tanah tipe Counterfort dilakukan secara manual. Adapun parameter  tanah input yang digunakan adalah berat volume kering (gd), berat volume basah (gw), permeabilitas (k), modulus young (Eref), paisson’s rasio (υ), sudut geser (f), kohesi (c). Hasil analisis stabilitas lereng pada kondisi eksisting menggunakan program Plaxis dan metode irisan dengan jari-jari (r) 65,06 meter didapatkan akan faktor keamanan sebesar 1,038 dan 1,079 dengan kondisi lereng tidak aman (FK < 1,25). Hasil analisis setelah diperkuat dinding penahan tanah tipe counterfort dan minipile dengan panjang 12 meter didapatkan angka faktor keamanan 1,268 dengan kondisi lereng tidak aman (FK < 1,5). Dengan demikian, maka diperlukan perkuatan tambahan dengan menggunakan angkur pada counterfort. Hasil analisis stabilitas lereng setelah diperkuat dinding penahan tanah tipe counterfort, minipile dan angkur dengan panjang 20 meter serta sudut kemiringan 30° didapatkan angka faktor keamanan 1,513 dengan kondisi lereng aman (SF > 1,5).Kata kunci : longsoran; counterfort; plaxis 2D; faktor keamanan.


2012 ◽  
Vol 446-449 ◽  
pp. 1199-1202
Author(s):  
Yan Jiang Chen ◽  
Xiao Qiang Ren ◽  
Jin Jie Wang ◽  
Da Peng Gu

Abstract. This paper lists the problems during the stability analysis of long span CFST arch bridge and the corresponding modeling method. Based on the construction control of an orthotropic long span CFST arch bridge, a FEM model had been established to analysis the stability of its rib during the concrete pumping. The conclusion shows significant importance to the bridge’s construction process.


2013 ◽  
Vol 459 ◽  
pp. 646-649
Author(s):  
Xian Rong Qin ◽  
Ying Hong ◽  
Peng Yue ◽  
Qing Zhang ◽  
Yuan Tao Sun

This paper proposed a method of dynamic stability analysis for the tower structure of construction elevators based on dynamic eigenvalue method. The method employed the time frozen formulation to model the problem, and the stress field from transient analysis was utilized to simulate the pre-stress effect of buckling analysis. The proposed method was applied to estimate the dynamic stability of the tower structure of construction elevators under moving loads, and the results suggest that high coefficients of lateral load and inclined tower structure will dramatically reduce the stability of the elevator in the construction process.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Shijie Chen ◽  
Ming Xiao ◽  
Juntao Chen

A numerical analysis method for block failure is proposed that is based on continuum mechanics. First, a mesh model that includes marked blocks was established based on the grid-based block identification method. Then, expressions of the contact force under various contact states were derived based on the explicit contact force algorithm, and a contact simulation method between blocks and the surrounding rock was proposed. The safety factors of the blocks were calculated based on the strength reduction method. This numerical analysis method can simulate both the continuous deformation of the surrounding rock and the discontinuous failure processes of the blocks. A simple example of a sliding block was used to evaluate the accuracy and rationality of the numerical method. Finally, combined with a deep underground excavation project under complex geological conditions, the stability of the blocks and rock were analyzed. The results indicate that the key blocks are damaged after excavation, the potentially dangerous blocks loosen and undergo large deformations, and the cracks between the blocks and the rock gradually increase as the excavation proceeds. The safety factors of the blocks change during the excavation. The numerical results demonstrate the influence of the surrounding rock on the failure process and on the stability of the blocks, and an effective analysis method is provided for the stability analysis of blocks under complex geological conditions.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Yawei Han ◽  
Shuai Guo ◽  
Leigang Zhang ◽  
Fengfeng (Jeff) Xi ◽  
Weiwei Lu

Discussed in this paper is the tip-over stability analysis of a pelvic support walking robot. To improve the activities of daily living (ADL) in hemiplegic patients, a pelvic support walking robot is proposed to help patients facilitating their rehabilitation. During the gait training with the robot, the abnormal man-machine interaction forces may lead to the tip-over of the robot, which is not beneficial to the rehabilitation process. A new method is proposed to predict the possibility of tipping over and evaluate the stability of the robot based on statics model, dynamics model, and zero-moment point (ZMP) theory. Through the interaction forces and moments analysis with static case, the safe point (ZMP) is studied, and the influence factors of force/moment are analyzed by dynamics case. An optimization algorithm based on the genetic algorithm (GA) is proposed to reduce the risk of tipping over. The simulation results show that the optimization algorithm can keep the robot from tipping over when the interaction forces exceed the safety threshold.


2012 ◽  
Vol 170-173 ◽  
pp. 1087-1090
Author(s):  
Wei Bin Yuan ◽  
Cheng Min Ye ◽  
Ji Yao ◽  
Lie De Wang

In recent year, the foundations of the stability analysis of slope were provided by the development of finite element and discrete element method. Using finite element and discrete element method, the stability analysis of three typical slopes of shiwu thorp of Quzhou was carried out. The safety factors of slope profile were obtained. Based on the judgment criterion of slope stability,the slopes stability of shiwu thorp was judged. The results showed that the way to analyze the stability of soil slope is feasible.


2017 ◽  
Author(s):  
Haijia Wen ◽  
Yanyan Zhang ◽  
Guofan Duan ◽  
Hongmei Fu ◽  
Peng Xie ◽  
...  

Abstract. The objective of this study is to develop a methodology for quantifying rainfall-induced landslide susceptibility in a regional scale. Based on the combination of mechanical stability analysis and artificial neural network (ANN) and of Geographic Information Systems (GIS) and detailed field investigation, the methodology was applied to the new urban area of Fengjie County in Northeastern Chongqing, China. According to the field investigation, an analysis sample database (ASD) pertaining to 6 slope stability influencing factors was built by means of uniform design method, and 30 samples for slope stability analysis were grouped. Then, safety factors of the sample groups were calculated by means of Geo-studio software concerning rainfall infiltration into slopes. To obtain overall slope stability analyses in the study area, the ANN was employed and the safety factors of the samples were utilized as training samples by ANN. Combining the trained ANN and survey data of the study area, the computation of safety factors under different rainfall were integrated and mapped within the GIS. The landslide susceptibility assessment indicates that slopes in more than a quarter of the study area are prone to landslides under rainstorm and severe rainstorm, however, slopes in the whole area under light rainfall, moderate rainfall and even heavy rainfall are relatively safer. Further, the results highlight the geological settings effect on landslide susceptibility as the high susceptibility zones are mainly distributed along the Yangtze River and its three branches, where the bank slopes are composed of fractured stratum, weak rocks and deposits. In good accordance with the rainfall-induced landslide events occurred in recent years and some findings in other literature about the study area, it is proved that the methodology presented in this paper could reasonably delineate landslide susceptibility under rainfall.


2014 ◽  
Vol 716-717 ◽  
pp. 395-399 ◽  
Author(s):  
Zhao Duan ◽  
Zi Guang He ◽  
Hong Zhou Lin

This passage picks up the case of the loess landslide in Zhangcunwan, Jingyang county, Shaanxi province for the research of the formation mechanism and stability analysis of loess under the condition of irrigation, which raises the dynamic equations of loess landslides induced by irrigation,and applies the equations into the case in the landslide in zhangcunwan. Besides,the passage has given the trajectory equations in the landslide in Zhangcunwan and verifies, as a consequence ,the results can be calculated accurately and it generally tallies with the actual one. The internal soil anti-shearing strength and the safety factors will decrease when the groundwater level rises 1m per case till the stabilizing force decreases by the soil sliding force when the whole slope if in the state of limited equilibrium.As the contents of irrigation rising continuously of the water level, the anti-shearing strength will be outdone by the shearing strength and this shall bring about the loss of the stability of the slope..


Sign in / Sign up

Export Citation Format

Share Document