Performance Enhancement of Gain-Modulated 3D Imaging System by Multi-Pulse Accumulation

2013 ◽  
Vol 475-476 ◽  
pp. 259-262
Author(s):  
Fei Wang

Range accuracy is one of the key parameters for 3D laser imaging systems. A gain-modulated 3D imaging system employing multi-pulse accumulation method is proposed to improve the range accuracy performance. Experiments results show that the range error decreases exponentially with the number of accumulated laser echoes.

Author(s):  
Bala Muralikrishnan ◽  
Prem Rachakonda ◽  
Vincent Lee ◽  
Meghan Shilling ◽  
Daniel Sawyer ◽  
...  

The relative-range error test is one of several tests described in the ASTM E3125-2017 standard for performance evaluation of spherical coordinate three-dimensional (3D) imaging systems such as terrestrial laser scanners (TLS). We designed a new artifact, called the plate-sphere target, that allows the realization of the relative-range error tests quickly and efficiently without the need for alignment at each position of the test. Use of a simple planar/plate target requires careful alignment of the target at each position of the relative-range error test, which is labor-intensive and time-consuming. This new artifact significantly reduces the time required to perform the test, from a matter of about 2 h to less than 30 min while resulting in similar test uncertainty values. The plate-sphere target was conceived and initially developed at the National Institute of Standards and Technology (NIST), improved based on feedback from collaborators at the National Research Council (NRC) of Canada and TLS manufacturers, and commercialized by Bal-tec Inc. This new artifact will save users and manufacturers of TLSs considerable time and money.


2021 ◽  
Author(s):  
Nitin Dubey ◽  
Joseph Rosen

Abstract Interferenceless coded aperture correlation holography (I-COACH) is an incoherent digital holographic technique with lateral and axial resolution similar to a regular lens-based imaging system. The properties of I-COACH are dictated by the shape of the system’s point response termed point spread hologram (PSH). As previously shown, chaotic PSHs which are continuous over some area on the image sensor enable the system to perform three-dimensional (3D) holographic imaging. We also showed that a PSH of an ensemble of sparse dots improves the system’s signal-to-noise ratio (SNR) but reduces the dimensionality of the imaging from three to two dimensions. In this study, we test the midway shape of PSH, an ensemble of sparse islands distributed over the sensor plane. A PSH of isolated chaotic islands improves the SNR of the system compared to continuous chaotic PSH without losing the capability to perform 3D imaging. Reconstructed images of this new system are compared with images of continuous PSH, dot-based PSH, and direct images of a lens-based system. Visibility, SNR, and the product of visibility with SNR are the parameters used in the study. We also demonstrate the imaging capability of a system with partial annular apertures. The reconstruction results have better SNR and visibility than lens-based imaging systems with the same annular apertures.


Author(s):  
Tibor A. Zwimpfer ◽  
Claudine Wismer ◽  
Bernhard Fellmann-Fischer ◽  
James Geiger ◽  
Andreas Schötzau ◽  
...  

AbstractLaparoscopic surgery provides well-known benefits, but it has technological limitations. Depth perception is particularly crucial, with three-dimensional (3D) imaging being superior to two-dimensional (2D) HD imaging. However, with the introduction of 4K resolution monitors, 2D rendering is capable of providing higher-quality visuals. Therefore, this study aimed to compare 3D HD and 2D 4K imaging using a pelvitrainer model. Eight experts and 32 medical students were performing the same four standardized tasks using 2D 4K and 3D HD imaging systems. Task completion time and the number of errors made were recorded. The Wilcoxon test and mixed-effects models were used to analyze the results. Students were significantly faster in all four tasks when using the 3D HD perspective. The median difference ranged from 18 s in task 3 (P < 0.003) up to 177.5 s in task 4 (P < 0.001). With the exception of task 4, students demonstrated significantly fewer errors in all tasks involving 3D HD imaging. The experts’ results confirmed these findings, as they were also faster in all four tasks using 3D HD, which was significant for task 1 (P < 0.001) and task 4 (P < 0.006). The expert group also achieved better movement accuracy using the 3D HD system, with fewer mistakes made in all four tasks, which was significant in task 4 (P < 0.001). Participants in both groups achieved better results with the 3D HD imaging system than with the 2D 4K system. The 3D HD image system should be used when available. Trial registration: this trial is registered at research registry under the identifier researchregistry6852.


2021 ◽  
pp. 000370282110133
Author(s):  
Rohit Bhargava ◽  
Yamuna Dilip Phal ◽  
Kevin Yeh

Discrete frequency infrared (DFIR) chemical imaging is transforming the practice of microspectroscopy by enabling a diversity of instrumentation and new measurement capabilities. While a variety of hardware implementations have been realized, considerations in the design of all-IR microscopes have not yet been compiled. Here we describe the evolution of IR microscopes, provide rationales for design choices, and the major considerations for each optical component that together comprise an imaging system. We analyze design choices in illustrative examples that use these components to optimize performance, under their particular constraints. We then summarize a framework to assess the factors that determine an instrument’s performance mathematically. Finally, we summarize the design and analysis approach by enumerating performance figures of merit for spectroscopic imaging data that can be used to evaluate the capabilities of imaging systems or suitability for specific intended applications. Together, the presented concepts and examples should aid in understanding available instrument configurations, while guiding innovations in design of the next generation of IR chemical imaging spectrometers.


Author(s):  
Jaime Vilaça ◽  
José Moreira de Azevedo ◽  
Hugo Cardoso Louro ◽  
Jorge Correia Pinto ◽  
Pedro Leão

2013 ◽  
Vol 26 (2) ◽  
pp. 250-258 ◽  
Author(s):  
Naohisa Yoshida ◽  
Nobuaki Yagi ◽  
Yutaka Inada ◽  
Munehiro Kugai ◽  
Tetsuya Okayama ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document