Shift Quality and Optimal Control of an Uninterrupted Shift Transmission Based on Overrunning Mechanism

2011 ◽  
Vol 48-49 ◽  
pp. 1038-1043
Author(s):  
Yan Wei Liu ◽  
Ke Gang Zhao ◽  
Xiang Dong Huang ◽  
Rong Shan Yang

Working principle of an uninterrupted shift transmission (UST) based on overrunning mechanism and its driveline dynamic model, as well as shift control strategy are studied. For shift quality optimization, the throttle control parameters are calculated based on simplex method and genetic algorithm. Using the control strategy and optimized parameters, simulation results show that jerks and clutch slip during shift are controlled well, satisfactory shift quality is obtained without power flow interruption.

2021 ◽  
Vol 37 (4) ◽  
pp. 677-689
Author(s):  
Guang Xia ◽  
Yueqiang Wang ◽  
Xiwen Tang ◽  
Linfeng Zhao ◽  
Jinfang Hu

Highlights A power shift control strategy based on torque and speed transition, which aims to deliver multiple target and multiparameter optimization of power shift control, is proposed in this study. It can effectively solve the shift power cycle. Based on minimum optimal control theory, the optimal control of shift quality during power shifting optimizes clutch terminal oil pressure, which is determined by solving the Rebecca differential matrix equation and shift characteristics based on various stages. By aiming at the multiple target and multiparameter optimization problem of the clutch control in the power shift process, the minimum optimal control principle is applied to the shift quality optimization of the power shift. Based on the minimum optimal control theory, the optimal solution of the terminal oil pressure of the clutch is determined by solving the Rebecca differential matrix equation to improve the shift quality of the power shift process. Abstract . The dual clutch of the combined transmission of a tractor with large horsepower uses a dynamic shifting process, in which only one clutch undergoes slipping friction during the shift. A power shift control strategy based on torque and speed transition, which aims to deliver multiple target and multiparameter optimization of power shift control, is proposed in this study. Based on minimum optimal control theory, the optimal control of shift quality during power shifting optimizes clutch terminal oil pressure, which is determined by solving the Rebecca differential matrix equation and shift characteristics based on various stages. In addition, the power shift simulation model of the double clutch is established. Simulation results show that the power shift control strategy based on single slip friction can effectively avoid power flow cycle, uninterruptible tractor power shift, and adaptive resistance change. The minimum optimization theory can effectively reduce the output torque fluctuation in the dynamic shift process, reduce friction work, and improve the shift impact. Keywords: Double clutch, Heavy-horsepower tractor, Minimum theory, Power shift.


2013 ◽  
Vol 860-863 ◽  
pp. 2732-2737
Author(s):  
Zhen Zhao ◽  
Yong Chen ◽  
Yu Xi Cai

The shift strategy affects the vehicle dynamic performance, ride quality directly. On the basis of the shift control strategy analysis for the traditional ICE vehicle, throttle, speed and acceleration were chosen as control parameters to determine the shift strategy. The determined three-parameter shift strategy was simulated in the CRUISE software environment. The shift quality was evaluated by two criteria. The simulation results show that the design of the shift control strategy can effectively improve the vehicle dynamic performance and shifting comfort.


2016 ◽  
Vol 835 ◽  
pp. 687-692 ◽  
Author(s):  
Lin Yue Zhang ◽  
Yao Fu ◽  
Xing Zhong Li

Shift process of automatic transmission is divided into torque phases and inertia phase, and the control principle of clutch to clutch shift is studied with the lever method. Then, inertia phase engine and transmission integrated control principle and entire shift process engine and transmission integrated control principle are respectively studied with taking power on up shift as study example and taking the transmission output torque fluctuations during shifting minimum as control target. Simulation results are compared to the results of power on up shift without engine and transmission integrated control, and it is proved that the transmission output torque overshoot peak with inertia phase engine and transmission integrated control strategy is decreased significantly and shifting jerks are reduced. Shift quality is improved significantly.


Author(s):  
Jeongman Park ◽  
Sunghyun Ahn ◽  
Oheun Kwon ◽  
Youngho Jun ◽  
Minhyo Kim ◽  
...  

In this paper, a 2 stage continuously variable transmission (CVT) shift control algorithm is proposed for the 1–2 upshift of the planetary gear to achieve the shift quality. A fuzzy control algorithm is designed considering the relatively slower response characteristics of CVT. In order to evaluate the performance of the control algorithm, a 2 stage CVT vehicle simulator is developed including a dynamic model of the CVT powertrain. From the simulation results, it is found that CVT gear ratio changes faster in the inertia phase and remains constant after the inertia phase of the planetary gear shift, which provides the reduced torque variation by the proposed control algorithm.


2012 ◽  
Vol 490-495 ◽  
pp. 1759-1762 ◽  
Author(s):  
Jian Hua Wang ◽  
Hao Xu ◽  
Fei Xie

This paper proposed a new design scheme for automatic clutch of AMT which is based on electrorheological (ER) fluid. Through analyzing the working principle and its transfer characteristics of ER fluid, it discussed the start process of vehicle and control strategy of ER Clutch. By changing the control voltage, ER clutch satisfied the requirements of evaluation indexes such as start time and impact degree. The simulation results showed that the control strategy can realize starting rapidly and steadily which would meet the start requirements of economical automobiles


2013 ◽  
Vol 791-793 ◽  
pp. 668-671
Author(s):  
Ke Gang Zhao ◽  
Hao Chang ◽  
Yong Liang Hu ◽  
Wei Hao Yao

Uninterrupted Shift Transmission (UST) is a novel vehicle transmission and which is introduced as the research object in this paper. It realizes torque uninterrupted shift by controlling dual multimode controlled shifter (MCS) modes and synchronizers. Fuzzy control technology is adopted in shift control strategy in order to improve its shift quality. Experimental results show that the fuzzy control strategy can improve the shift quality of UST effectively.


2013 ◽  
Vol 709 ◽  
pp. 611-615
Author(s):  
Si Jiang Chang ◽  
Qi Chen

To obtain the best control effect for the controller of Extended Range Munitions (ERM), an optimal method for control parameters design was proposed. The adaptive genetic algorithm (GA) with real coding and the elites to keep the tactics were combined, based on which the original GA was improved. An optimal model of pitch angle controller for a type of ERM was established and the improved GA was used as the solver. Taking the stabilization loop as an example, the Powell algorithm, the simple GA and the improved GA were used to optimization, respectively. The simulation results indicate that the improved GA is more efficient and possesses stronger capability for searching.


2014 ◽  
Vol 548-549 ◽  
pp. 1017-1022
Author(s):  
Tian Jian Yang ◽  
Xue Lai Zhang

In order to optimize the energy-saving effect of frequency carrier intelligent shutoff (FCIS), we build models systematically on FCIS of wireless device and heat exchange process in a telecommunication base station (TBS). Simulation results show that the energy saved from our recommended strategy and according configuration is 2.7-3.3 times of that under conservative 2-threshold strategy widely applied in China.


Sign in / Sign up

Export Citation Format

Share Document