The Effect of Elastic Pre-Bending on the Laser Peen Forming of 2024-T351 Aluminum Alloy Plate

2014 ◽  
Vol 496-500 ◽  
pp. 133-136 ◽  
Author(s):  
Lei Chen ◽  
Yong Xiang Hu ◽  
Gang Fang ◽  
Zhen Qiang Yao ◽  
Xing Wei Zheng

Laser peen forming, is a purely mechanical forming method achieved through the use of laser energy to form metal plate with small curvatures. Experiments were performed to investigate the effect of pre-bending on the plate bending deformation induced by laser peen forming. The pre-bending of plate was accomplished by a fixture with the cambered top surface. The pre-bending curvature radius is calculated and is used to design cambered surface. The LPF experiments are performed with Nd: YAG laser with overlapping laser spots. It is found that the convex deformation can be induced after laser shocks. And its curvature radius in the elastically elongated direction can be greatly increased by applying pre-bending, while in the perpendicular direction, the curvature radius is decreased.

2019 ◽  
Vol 803 ◽  
pp. 50-54
Author(s):  
Takahiro Ohashi ◽  
Kento Okuda ◽  
Hamed Mofidi Tabatabaei ◽  
Tadashi Nishihara

This paper provides a framework for the transcription of the surface of a mirror-finished die onto a metal plate by friction stir forming (FSF). In FSF, a material is put on a die, then friction stirring was conducted on its back surface for the transcription of the profile of the die onto the material. In this paper, a mirror-polished die of JIS SUS304 stainless steel with surface roughness Sz 0.014 mm and a probe-less friction-stirring tool in 18 mm shoulder diameter were employed for the experiment. A5083P-O aluminum plates, 3 mm thick, were utilized as base metals for the transcription. The authors varied tool spindle speed and tool feed rate to evaluate the forming results. Consequently, a mirror-finished surface under the friction-stirring tool was successfully transferred from the die to the aluminum alloy plate. The roughness of the base metal before processing was Sz 0.022 mm and that of the processed metal was Sz 0.012–0.016 mm. Higher spindle speed and faster feed rate resulted in a smoother surface; it is thought that high spindle speed and faster feed rate should be effective for higher contact pressure between a die and a material.


2018 ◽  
Vol 18 (5) ◽  
pp. 1159-1167 ◽  
Author(s):  
Jun Wang ◽  
Xing-Quan Zhang ◽  
Wei Wei ◽  
Jin-Yu Tong ◽  
Bin Chen ◽  
...  

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 623
Author(s):  
Ni Tian ◽  
Zhen Feng ◽  
Xu Shi ◽  
Wenze Wang ◽  
Kun Liu ◽  
...  

In the present study, the fatigue life and fatigue fracture characteristics of annealed 7005 aluminum alloy plates subjected to different pre-tensile deformations were investigated. The results obtained upon increasing the pre-tensile deformation of the alloy plate to 20% revealed that the second-phase particles did not show any obvious changes, and that the thickness of the thin strip grain slightly decreased. The dislocation distribution in the alloy matrix varied significantly among the grains or within each grain as the dislocation density gradually increased with increasing pre-tensile deformation. Moreover, the fatigue performance of the annealed 7005 aluminum alloy plate was significantly improved by the pre-tensile deformation, and the alloy plate subjected to 20% pre-tensile deformation exhibited an optimal fatigue life of ~1.06 × 106 cycles, which was 5.7 times and 5.3 times that of the undeformed and 3% pre-stretched alloy plates, respectively. Two fatigue life plateaus were observed in the pre-tensile deformation ranges of 3–5% and 8–12%, which corresponded to heterogeneous dislocation distribution among various grains and within each grain, respectively. Moreover, two large leaps in the plot of the fatigue-life–pre-tensile-deformation curve were observed, corresponding to the pre-tensile deformation ranges of 5–8% and 16–20%, respectively.


2021 ◽  
Vol 1042 ◽  
pp. 3-8
Author(s):  
Mitsuhiro Watanabe ◽  
Shinpei Sasako

Dissimilar metal lap joining of A5052 aluminum alloy plate and C1100 pure copper plate was performed by using friction stir spot welding. The rotating welding tool, which was composed of a probe part and a shoulder part, was plunged from the aluminum alloy plate which was overlapped on the copper plate, and residual aluminum alloy thickness under the probe part of the welding tool after plunging of the welding tool was controlled in the range from 0 mm to 0.4 mm. The strength of the welding interface was evaluated by using tensile-shear test. Microstructure of the welding interface was examined by using an optical microscope and a field emission scanning electron microscope. The welding was achieved at the residual aluminum alloy thickness under the probe part of the welding tool below 0.3 mm. The welded area was formed at aluminum alloy/copper interface located under the probe part of the welding tool, and its width increased with decreasing the residual aluminum alloy thickness. A characteristic laminate structure was produced in the copper matrix near the welding interface. In the joint fabricated at the residual aluminum alloy thickness below 0.1 mm, hook of Cu was formed at edge of the welded area. The fracture did not occur at the welding interface. A remarkable improvement in strength was observed in the joint fabricated at the residual aluminum alloy thickness below 0.1 mm. The formation of laminate structure and hook is considered to result in joint strength improvement.


Author(s):  
yongbang miao ◽  
Ruifeng Dou ◽  
Zhi Wen ◽  
Xunliang Liu ◽  
Cheng Zhu

Sign in / Sign up

Export Citation Format

Share Document