Design Optimization of Steel Anchor Beam in Cable-Pylon Composite Anchor Structure

2014 ◽  
Vol 501-504 ◽  
pp. 1374-1377
Author(s):  
Min Zhao ◽  
Wen Ru Lu ◽  
Lin Ma

Because the stress concentration usually appears in the plate corner or discontinuity zone, it is necessary to optimize design for local plate of steel anchor beam bearing huge cable force. Based on 3D elaborate finite-element method, the stress distribution of steel anchor beam of cable-pylon composite anchor structure was analyzed. The results showed that the steel anchor beam of cable-pylon composite anchorage structure was safe and reliable, the application of the vertical stiffened plate of the side plate in anchor box and the middle diaphragm efficiently improved the force state of the steel anchor beam, on the other hand the stress conditions of the concrete pylon was more ideal when the steel anchor beam was within the boundary condition of one end of anchor beam fixed and the other end with sliding support.

Author(s):  
Mani Ram Saharan ◽  
Hani Mitri

An approach for simulation of rock fracturing as a result of engineering blasting is presented in this paper. The approach uses element elimination technique within the framework of finite element method to capture the physics of engineering blasting. The approach does not require pre-placement of fracture paths which is the severe drawback of the other existing methodologies and approaches. Results of plane stress modelling for isotropic brittle rock behaviour are presented in this paper and these results are in good agreement with the existing knowledge base. The authors also review the existing approaches of numerical modelling to compare the efficacy of the element elimination technique. It is anticipated that the further developments with this approach can prove to be good experimental tool to improve engineering blasting operations.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4842
Author(s):  
Huanping Yang ◽  
Wei Zhuang ◽  
Wenbin Yan ◽  
Yaomian Wang

The nanoindentation loading response of elastoplastic materials was simulated by the finite element method (FEM). The influence of the Young’s modulus E, yield stress σy, strain hardening exponent n and Poisson’s ratio ν on the loading response was investigated. Based on an equivalent model, an equation with physical meaning was proposed to quantitatively describe the influence. The calculations agree well with the FEM simulations and experimental results in literature. Comparisons with the predictions using equations in the literature also show the reliability of the proposed equation. The investigations show that the loading curvature C increases with increasing E, σy, n and ν. The increase rates of C with E, σy, n and ν are different for their different influences on the flow stress after yielding. It is also found that the influence of one of the four mechanical parameters on C can be affected by the other mechanical parameters.


1997 ◽  
Vol 56 (2) ◽  
pp. 217-225
Author(s):  
Jae Ryong Kweon

A finite element method for solving the compressible viscous Stokes equation with an inflow boundary condition is presented. The unique existence of the solution of the discrete problem is established, and an error analysis is given. It is shown that the error in pressure is dominated by the one in velocity and an error at the inflow portion of the boundary.


2013 ◽  
Vol 274 ◽  
pp. 490-495 ◽  
Author(s):  
Hong Tao Bi ◽  
Liang Wu

In this paper, combined with the background engineering, according to the cable-stayed bridge's design theory, through the adjustment of cable force to change the structure's internal force by using the big general finite element method software which is named Midas/Civil, and then analyzed the related parameters affecting to structural internal force and distortion, which obtained the reasonable length of non-stayed cable segment to this kind of bridge.


Sign in / Sign up

Export Citation Format

Share Document