Elastic Critical Buckling Modes and Stress of Cold-Formed Thin-Walled Lipped Channel with Multiple Intermediate Stiffeners

2014 ◽  
Vol 501-504 ◽  
pp. 470-473
Author(s):  
Guang Yue Ma

Elastic buckling modes of cold-formed thin-walled steel member have three relevant types: local, distortional and global. The complicated and important thing is to differentiating buckling modes and resolving buckling stress for engineers. It will be given for Cold-formed thin-walled lipped channel member with multiple intermediate stiffeners. The theoretical analysis coincide exactly with the experimental results, it can be used as a reference for engineers.

Author(s):  
G D Galletly ◽  
A Muc

The paper deals with the buckling of torispherical shells consisting of a steel external layer plus different numbers of composite layers. It is assumed that the total thickness of the fibre-reinforced plastic (FRP)-steel shell is constant but that the thickness of the steel and of the composite may be varied. In the paper it is shown (a) how the orientation of the fibres and the composite lamina thicknesses affect the elastic buckling modes and (b) how substantial increases in elastic buckling pressures may be achieved by reinforcing the steel torispheres with layers of composite. The analysis is carried out for various values of the geometrical parameters describing torispheres, including spherical caps. The influence of the yielding of the steel layer on the buckling pressures of FRP-steel torispheres is also discussed. As might be expected, it is necessary to take plasticity into account when predicting the buckling pressures of these shells. Some experimental results are given which confirm this expectation. The effect of initial shape imperfections in the shells is also considered briefly. However, the dearth of experimental results on FRP-steel shells prevents a proper evaluation of the way in which imperfections decrease their buckling strength.


1996 ◽  
Vol 05 (04) ◽  
pp. 653-670 ◽  
Author(s):  
CÉLINE FIORINI ◽  
JEAN-MICHEL NUNZI ◽  
FABRICE CHARRA ◽  
IFOR D.W. SAMUEL ◽  
JOSEPH ZYSS

An original poling method using purely optical means and based on a dual-frequency interference process is presented. We show that the coherent superposition of two beams at fundamental and second-harmonic frequencies results in a polar field with an irreducible rotational spectrum containing both a vector and an octupolar component. This enables the method to be applied even to molecules without a permanent dipole such as octupolar molecules. After a theoretical analysis of the process, we describe different experiments aiming at light-induced noncentrosymmetry performed respectively on one-dimensional Disperse Red 1 and octupolar Ethyl Violet molecules. Macroscopic octupolar patterning of the induced order is demonstrated in both transient and permanent regimes. Experimental results show good agreement with theory.


2006 ◽  
Vol 06 (04) ◽  
pp. 457-474 ◽  
Author(s):  
M. A. BRADFORD ◽  
A. ROUFEGARINEJAD ◽  
Z. VRCELJ

Circular thin-walled elastic tubes under concentric axial loading usually fail by shell buckling, and in practical design procedures the buckling load can be determined by modifying the local buckling stress to account empirically for the imperfection sensitive response that is typical in Donnell shell theory. While the local buckling stress of a hollow thin-walled tube under concentric axial compression has a solution in closed form, that of a thin-walled circular tube with an elastic infill, which restrains the local buckling mode, has received far less attention. This paper addresses the local buckling of a tubular member subjected to axial compression, and formulates an energy-based technique for determining the local buckling stress as a function of the stiffness of the elastic infill by recourse to a transcendental equation. This simple energy formulation, with one degree of buckling freedom, shows that the elastic local buckling stress increases from 1 to [Formula: see text] times that of a hollow tube as the stiffness of the elastic infill increases from zero to infinity; the latter case being typical of that of a concrete-filled steel tube. The energy formulation is then recast into a multi-degree of freedom matrix stiffness format, in which the function for the buckling mode is a Fourier representation satisfying, a priori, the necessary kinematic condition that the buckling deformation vanishes at the point where it enters the elastic medium. The solution is shown to converge rapidly, and demonstrates that the simple transcendental formulation provides a sufficiently accurate representation of the buckling problem.


2018 ◽  
Vol 123 ◽  
pp. 214-221 ◽  
Author(s):  
Zhaochao Li ◽  
Yan Tang ◽  
Fujian Tang ◽  
Yizheng Chen ◽  
Genda Chen

2013 ◽  
Vol 300-301 ◽  
pp. 382-388
Author(s):  
Zhan Wei Xu ◽  
Gui Lin Zheng

A novel rain gauge based on acoustic self-calibration principle is proposed in the paper. Acoustic self-calibration principle can eliminate the uncertainty of the velocity of ultrasound and achieve accurate measurement of rainfall. The rain gauge not only overcomes the influence on the rainfall measurement under intensive rainfall conditions, but also improves the precision of rain gauge. Plenty of experiments have been done to validate the design. Both theoretical analysis and experimental results show the effectiveness of the rain gauge. A full description of the rain gauge and implementation are presented.


2018 ◽  
Vol 219 ◽  
pp. 02018
Author(s):  
Łukasz Żmuda-Trzebiatowski

The paper deals with correlation between natural frequencies of two steel thin-walled columns and the corresponding applied load. The structures are made of cold-formed lipped channel sections. The columns lengths were assumed to follow two buckling patterns – global flexural and flexural-torsional buckling. In the thicker structure two material models were considered – linearly-elastic and elastic-perfectly plastic. Numerical computations cover dynamic eigenvalue problem, linear buckling and geometrically (and materially) non-linear analysis. The correlation between squares of natural frequencies and the applied load is linear in both columns. The first natural frequencies drop to zero due to structural buckling. This method, called the Vibration Correlation Technique, allows to predict buckling loads on the basis of measured vibration frequencies of the structures. Plasticity does not affect the corresponding curves – the use of the presented technique is limited to the structures exhibiting elastic buckling behaviour.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Rajeshwari Pandey ◽  
Neeta Pandey ◽  
Sajal K. Paul ◽  
A. Singh ◽  
B. Sriram ◽  
...  

Two alternate topologies of lossless grounded inductor have been proposed using operational transresistance amplifier (OTRA). Three applications using the proposed inductors are also included. PSPice simulation and experimental results have been included to demonstrate the performance and verify the theoretical analysis.


Sign in / Sign up

Export Citation Format

Share Document