The Research of On-Line Monitoring System Design for Temperature Distribution in Coalmine Gob Area

2014 ◽  
Vol 513-517 ◽  
pp. 2931-2937
Author(s):  
Zhian Huang ◽  
Zhou Jing Ye ◽  
Ying Hua Zhang ◽  
Yu Kun Gao

With some residual coal and much leaking air in gob area, fire happens frequently in those areas. Thus, it has become one of main factors of restricting mine development. With the technology of optical fiber pyrometer, the monitoring system has been designed for temperature distribution in coalmine gob area. In addition, by combining it with line laying system, power supply system, data collection system and data analysis system, temperature distribution in coalmine gob area could be monitored in time to provide firing warning of the spontaneous fire happening in the residual coal and fire would be reduced effectively. By comparing optical fiber thermometric system with the temperature measurement system, it shows that the former have a clear advantage in the aspects of time, the location of ignition point, reaction speed and costs maintenance.

2021 ◽  
Vol 31 (5) ◽  
pp. 1-4
Author(s):  
Zhuyong Li ◽  
Yingying Lv ◽  
Meiying Yin ◽  
Changxia Liu ◽  
Jian Li ◽  
...  

2013 ◽  
Vol 694-697 ◽  
pp. 1114-1117
Author(s):  
Yun Qin

The reliability of busway in high current state is closely related to its temperature. So effectively monitoring temperature is the key issue to ensure the busway work safely. Because of the constraints such as high voltage and strong electromagnetic fields, traditional temperature measurement system can not meet the requirements. A distributed busway temperature monitoring system is designed in this paper based on the temperature effect of fiber Raman scattering signal. Arithmetic average, wavelet noise reduction and low-pass filter combination of data processing is used to overcome the very low SNR. Experiments show that the system can measure the temperature of 1km busway effectively. Temperature resolution can achieve 3°C.


Author(s):  
Agus Sudianto ◽  
Zamberi Jamaludin ◽  
Azrul Azwan Abdul Rahman ◽  
Sentot Novianto ◽  
Fajar Muharrom

Manufacturing process of metal part requires real-time temperature monitoring capability to ensure high surface integrity is upheld throughout the machining process. A smart temperature measurement and monitoring system for manufacturing process of metal parts is necessary to meet quality and productivity requirements. A smart temperature measurement can be applied in machining processes of conventional, non-conventional and computer numerical control (CNC) machines. Currently, an infrared fusion based thermometer Fluke Ti400 was employed for temperature measurement in a machining process. However, measured temperature in the form of data list with adjustable time range setting is not automatically linked to the computer for continuous monitoring and data analysis purposes. For this reason, a smart temperature measurement system was developed for a CNC milling operation on aluminum alloy (AA6041) using a MLX90614 infrared thermometer sensor operated by Arduino. The system enables data linkages with the computer because MLX90614 is compatible and linked to Microsoft Exel via the Arduino. This paper presents a work-study on the performance of this Arduino based temperature measurement system for dry milling process application. Here, the Arduino based temperature measurement system captured the workpiece temperature during machining of Aluminum Alloy (AA6041) and data were compared with the Fluke Ti400 infrared thermometer. Measurement results from both devices showed similar accuracy level with a deviation of ± 2 oC. Hence, a smart temperature measurement system was succeesfully developed expanding the scopes of current system setup.


2008 ◽  
Vol 17 (6) ◽  
pp. 397-405
Author(s):  
Wook-Jae Yoo ◽  
Jeong-Ki Seo ◽  
Dong-Hyun Cho ◽  
Kyoung-Won Jang ◽  
Sang-Hun Shin ◽  
...  

2000 ◽  
Author(s):  
Xu Cheng ◽  
Yogesh Jaluria

Abstract The motivation of manufacturers to pursue higher productivity and low costs in the fabrication of optical fibers requires large diameter silica-based preforms drawn into fiber at very high speed. An optimal design of the draw furnace is particularly desirable to meet the need of high-volume production in the optical fiber industry. This paper investigates optical fiber drawing at high draw speeds in a cylindrincal graphite furnace. A conjugate problem involving the glass and the purge gases is considered. The transport in the two regions is coupled through the boundary conditions at the free glass surface. The zonal method is used to model the radiative heat transfer in the glass. The neck-down profile of the preform at steady state is determined by a force balance, using an iterative numerical scheme. Thermally induced defects are also considered. To emphasize the effects of draw furnace geometry, the diameters of the preform and the fiber are kept fixed at 5 cm and 125 μm, respectively. The length and the diameter of the furnace are changed. For the purposes of comparison, a wide domain of draw speeds, ranging from 5 m/s to 20 m/s, is considered, and the form of the temperature distribution at the furnace surface is kept unchanged. The dependence of the preform/fiber characteristics, such as neckdown profile, velocity distribution and lag, temperature distribution and lag, heat transfer coefficent, defect concentration, and draw tension, on the furnace geometry is determined. Based on these numerical results, an optimal design of the draw furnace can be developed.


Sensor Review ◽  
2021 ◽  
Vol 41 (4) ◽  
pp. 350-360
Author(s):  
Xiao Fang ◽  
Yajie Zeng ◽  
Feng Xiong ◽  
Jiang Chen ◽  
Fei Cheng

Purpose Seepage of the dam is an important safety problem, which may cause internal erosion of the structure. In the field of seepage monitoring in civil engineering, the distributed optical fiber sensing technology based on the temperature tracing method has been paid more attention due to its unique advantages of high sensitivity, good stability and high resolution. The purpose of this paper is to make a review of the existing related research, so as to facilitate the later scholars to understand and further study more systematically. Design/methodology/approach In this paper, three kinds of commonly used distributed fiber temperature measurement technologies are introduced. Based on the working principle, monitoring system, theoretical analysis, experimental research and engineering application of the fiber seepage monitoring technology, the present situation of dam seepage monitoring based on distributed fiber is reviewed in detail and their advantages and disadvantages are compared. Findings The thermal monitoring technology of seepage measurement depends on the accuracy of optical fiber temperature measurement (including the accuracy of the system and the rationality of the discrimination method), the correct installation of optical fiber and the quantitative analysis of temperature data. The accuracy of the current monitoring system can basically meet the existing measurement requirements, but the correct installation of optical fiber and the calibration of temperature data need to be further studied for different discrimination methods, and this field has great research value. Originality/value At present, there are many applications and research studies of optical fiber sensing in the field of structural health monitoring, and there are also reviews of related aspects. However, there is little or no review only in the field of seepage monitoring. This paper summarizes the research and application of optical fiber sensing in the field of seepage monitoring. The possibility of the gradient method to find its new prospect with the development of monitoring systems and the improvement of temperature resolution is discussed. The idea of extending the seepage monitoring method based on distributed optical fiber thermal monitoring technology to other monitoring fields is also given in the paper.


Sign in / Sign up

Export Citation Format

Share Document