A New Image Segmentation Model

2014 ◽  
Vol 519-520 ◽  
pp. 541-547
Author(s):  
Chao Liu ◽  
Jing Liu ◽  
Lu Lu Zhang

To build a new image segmentation model based on level set theory : Add edge detection operator to edgeless active contour model to detect local information; introduce adaptive coefficient of area item to let the model autonomously adjust and evolve curve position according to image information; adopt weighted average gray value to replace traditional absolute mean value to reduce error and improve segmentation result. Experimental result comparison shows that the new model can detect global information and local information at the same time, adaptively adjust curve evolution direction, and has a fast segmentation speed. Compared to edgeless active contour model, the new model is a more effective image segmentation method as it has greater advantages in image segmentation accuracy and computational complexity.

2018 ◽  
Vol 8 (12) ◽  
pp. 2576 ◽  
Author(s):  
Lin Sun ◽  
Xinchao Meng ◽  
Jiucheng Xu ◽  
Yun Tian

Inhomogeneous images cannot be segmented quickly or accurately using local or global image information. To solve this problem, an image segmentation method using a novel active contour model that is based on an improved signed pressure force (SPF) function and a local image fitting (LIF) model is proposed in this paper, which is based on local and global image information. First, a weight function of the global grayscale means of the inside and outside of a contour curve is presented by combining the internal gray mean value with the external gray mean value, based on which a new SPF function is defined. The SPF function can segment blurred images and weak gradient images. Then, the LIF model is introduced by using local image information to segment intensity-inhomogeneous images. Subsequently, a weight function is established based on the local and global image information, and then the weight function is used to adjust the weights between the local information term and the global information term. Thus, a novel active contour model is presented, and an improved SPF- and LIF-based image segmentation (SPFLIF-IS) algorithm is developed based on that model. Experimental results show that the proposed method not only exhibits high robustness to the initial contour and noise but also effectively segments multiobjective images and images with intensity inhomogeneity and can analyze real images well.


2021 ◽  
pp. 114811
Author(s):  
Aditi Joshi ◽  
Mohammed Saquib Khan ◽  
Asim Niaz ◽  
Farhan Akram ◽  
Hyun Chul Song ◽  
...  

2021 ◽  
pp. 1-19
Author(s):  
Maria Tamoor ◽  
Irfan Younas

Medical image segmentation is a key step to assist diagnosis of several diseases, and accuracy of a segmentation method is important for further treatments of different diseases. Different medical imaging modalities have different challenges such as intensity inhomogeneity, noise, low contrast, and ill-defined boundaries, which make automated segmentation a difficult task. To handle these issues, we propose a new fully automated method for medical image segmentation, which utilizes the advantages of thresholding and an active contour model. In this study, a Harris Hawks optimizer is applied to determine the optimal thresholding value, which is used to obtain the initial contour for segmentation. The obtained contour is further refined by using a spatially varying Gaussian kernel in the active contour model. The proposed method is then validated using a standard skin dataset (ISBI 2016), which consists of variable-sized lesions and different challenging artifacts, and a standard cardiac magnetic resonance dataset (ACDC, MICCAI 2017) with a wide spectrum of normal hearts, congenital heart diseases, and cardiac dysfunction. Experimental results show that the proposed method can effectively segment the region of interest and produce superior segmentation results for skin (overall Dice Score 0.90) and cardiac dataset (overall Dice Score 0.93), as compared to other state-of-the-art algorithms.


2014 ◽  
Vol 513-517 ◽  
pp. 3463-3467
Author(s):  
Li Fen Zhou ◽  
Chang Xu Cai

The Chan-Vese (C-V) active contour model has low computational complexity, initialization and insensitive to noise advantagesand utilizes global region information of images, so it is difficult to handle images with intensity inhomogeneity. The Local binary fitting (LBF) model based on local region information has its certain advantages in mages segmentation of weak boundary or uneven greay.but , the segmentation results are very sensitive to the initial contours, In order to address this problem, this paper proposes a new active contour model with a partial differential equation, which integrates both global and local region information. Experimental results show that it has a distinctive advantage over C-V model for images with intensity inhomogeneity, and it is more efficient than LBF.


Sign in / Sign up

Export Citation Format

Share Document