Design and Implementation of Actuator Controller for Greenhouse Control System

2014 ◽  
Vol 532 ◽  
pp. 62-69
Author(s):  
Yi Chuan Gao ◽  
Guo Chang Liu

A novel actuator controller for greenhouse control system is proposed in this paper. This controller can solve the problems existing in traditional greenhouse control system such as generating electric arc, short circuit risk, lack of communication and smart ability. We adopt five separate magnetic latching relays to control the three-phase motor. In order to prevent generating electric arc in the process of turning off relay, the alternating current zero-crossing detection circuit is designed. In software side, the relay-off task program is running in the real-time operating system, which can ensure turn-off operation at the point of alternating current zero-crossing. In addition, the controller is capable of detecting motors operation parameter and having multiple communication interfaces. Finally, we implement our controller in practice and experimental results meet the design requirements.

2012 ◽  
Vol 562-564 ◽  
pp. 1531-1536
Author(s):  
Ming Xing Zhu ◽  
Jing Bo Shi

In the inverter control system, two-phase modulated space vector pulse width modulation (SVPWM) algorithm has the advantages of minimum switch loss and higher utilization of direct current (DC) bus voltage. Non-dead-time control strategy can eliminate the problems of the dead time effects. But the traditional non-dead-time control strategy heavily depends on the current zero-crossing detection, which may cause the output voltage distortion or even a short circuit. Based on the analysis of the reason for the distortion, a new optimized non-dead-time control method is proposed. Two methods for the detection of the overlapping area are enumerated. The conclusions are confirmed by the simulation results with MATLAB/ SIMULINK.


Author(s):  
Liu Yang ◽  
Qinyue Tan ◽  
Di Xiong ◽  
Zhengguang Liu

The overrun of transient power quality index caused by the large-capacity electric arc furnace (EAF) has become a prominent problem affecting the safe and stable operation of the power system. (1) In this paper, the relationship between arc furnace volt-age and current is derived based on the different stages of arc combustion, and the random variation of chaotic phenomenon of the arc voltage are simulated. Established an EAF model suitable for the study of transient power quality problems. (2) Take 50t AC EAF as an example to analyze the reactive power impact and the influence on the point of common coupling (PCC) voltage caused by the three-phase short circuit of the electrode. The results show that the experimental results are consistent with the theoretical analysis, verifying the correctness and effectiveness of the model. (3) When the three-phase short-circuit occurs, the reactive power impact is nearly 6 times that of normal operation, the short-circuit current is 2.66 times that of normal operation, and the effective value of the PCC voltage has dropped by 40.37%, which provides a theoretical basis for real-time compensation of impulsive reactive power and improvement of the transient power quality of the EAF.


2014 ◽  
Vol 571-572 ◽  
pp. 906-909
Author(s):  
Zhu Lei Shao

In order to reduce the power consumption of the synchronous rectification model buck converter, a current zero crossing detection circuit is designed in this paper. The detection circuit determines the freewheeling current of the synchronous rectification power switch is zero or not by detecting the drain voltage of synchronous rectification power switch. Due to use transistors instead of resistors in the voltage conversion, the accuracy of the detection circuit is less affected by temperature and process corner. From the experimental results, the detection circuit can make accurate current zero crossing detection in different temperatures and process corners, and the detection circuit has strong robustness.


2020 ◽  
Vol 14 (1) ◽  
pp. 21-26
Author(s):  
S. SKRYPNYK ◽  
◽  
A. SHEINA ◽  

Most failures in electrical installations are caused by short circuits (short circuits), which occur as a result of a failure in the electrical strength of the insulation of the conductive parts. A short circuit is an electrical connection of two points of an electric circuit with different values of potential, which is not provided by the design of the device, which interferes with its normal operation. Short circuits may result from a failure of the insulation of the current-carrying elements or the mechanical contact of the non- insulated elements. Also called a short circuit is a condition where the load resistance is less than the internal resistance of the power source. The reasons for such violations are various: aging of insulation, breakages of wires of overhead transmission lines, mechanical damages of isolation of cable lines at ground works, lightning strikes in the transmission line and others. Most often, short-circuits occur through transient resistance, such as through the resistance of an electric arc that occurs at the point of damage to the insulation. Sometimes there are metallic short circuits in which the resistance of the electric arc is very small. The study of short circuits in the power grid is a major step in the design of modern electrical networks. The research is conducted using computer software, first by modeling the system and then simulating errors. A malfunction usually leads to an increase in the current flowing in the lines, and failure to provide reliable protection can result in damage to the power unit. Thus, short-circuit calculations are the primary consideration when designing, upgrading, or expanding a power system. The three-phase short circuit is the least likely. However, in many cases, the three-phase short circuit is associated with the most severe consequences, as it causes the highest power imbalances on the shafts of the generators. The study of transients begins with the mode of three-phase closure due to its relative simplicity in comparison with other types of asymmetry. In most cases, the analysis and calculation of the transient regime of the electrical system involves the preparation of a calculated scheme of substitution, in which the parameters of its elements are determined in named or relative units. The electrical substitution circuitry is used to further study the transients in the power system. The definition of electrical and electromagnetic quantities in relative units is widely used in the theory of electric machines. This is because it significantly simplifies the theoretical calculations and gives the results a generalized view in the practical calculations of currents and residual voltages at the short circuit. By the relative value of any value is understood as its relation to another value of the same name, taken as the base. So, before presenting any quantities in relative units, we need to choose the basic units. In the electrical system with increased voltages, the overall load capacity of the network increases, which in turn makes it possible to supply high-quality electrical energy over a greater distance. In the process of comparing the type of transmission lines, it should be noted that the advantages of the cable transmission line. According to the results of the calculation of short-circuit currents, it can be concluded that in networks with a larger line cross-section and a higher voltage, the short-circuit currents are larger. Thus, during the transition of the electric networks to the higher voltage class of 20 kV, the currents of the KZ increased by 43% compared to the 6 kV electric network. This analysis shows that the importance of reliable power supply in the power supply system for high voltage classes must be high and have equipment to prevent emergencies. In the future, it is planned to develop a systematic calculation of short-circuit currents for a number of transmission lines and to conduct mathematical modeling in the system of applications for the study of transient processes at short circuits.


2021 ◽  
Vol 12 (1) ◽  
pp. 17
Author(s):  
Jing Zhou ◽  
Kan Liu ◽  
Juan Li ◽  
Longfei Li ◽  
Wei Hu ◽  
...  

Due to the nonlinearities of the voltage-source inverter (VSI) in a permanent magnet synchronous machine (PMSM) drive system, there is always an error between the reference voltage and the actual output voltage. To compensate the voltage error, many schemes have been proposed based on the phase current polarity. However, due to factors such as current clamping, measurement noises, and control system delay, the accuracy of the detected current polarity is relatively low, especially when the current is around zero, which would therefore affect the compensation performance. To solve this issue, a deadbeat prediction-based current zero-crossing detection method (DP-CZD) is proposed in this paper. With the proposed method, the measured three-phase currents are replaced by the predicted three-phase currents in terms of the polarity determination, when the absolute value of the phase current is within the threshold range. Compared with the conventional phase current polarity detecting methods, the proposed method can greatly improve the accuracy of detected current polarity due to its smooth transient waveform, and consequently, contributes to the much higher accuracy and lower total harmonic distortion (THD) in the compensation of VSI nonlinearity, which is verified through a prototype surface-mounted PMSM.


Author(s):  
Liu Yang ◽  
Qinyue Tan ◽  
Di Xiong

Three-phase AC electric arc furnace (EAF) is a typical non-linear load, causing many power quality problems. Most of the researches on the voltage problems of EAF mainly focus on the voltage fluctuation, and less on the transient voltage problems caused by EAF short circuit and open circuit. In this paper, the relationship between voltage and current of EAF is obtained by combining hyperbolic function and exponential function, then the white noise and chaotic circuit are added to establish the EAF model which is suitable for the study of voltage fluctuation and transient voltage. This paper analyzes the causes of the transient voltage problem of the EAF, calculates the short-circuit current, reactive impact and the influence on voltage at the point of common coupling (PCC) in the three-phase short-circuit of the EAF, and compares the calculation results with the simulation results to prove the accuracy of this model. The results show that the reactive impact of three-phase short circuit is about twice as much as that of normal operation of EAF, resulting in about 30% voltage sag at the PCC, which is very unfavorable to the power grid. This paper provides reference for transient power quality evaluation and dynamic reactive power compensation of EAF.


Sign in / Sign up

Export Citation Format

Share Document