whey protein hydrolysates
Recently Published Documents


TOTAL DOCUMENTS

122
(FIVE YEARS 35)

H-INDEX

30
(FIVE YEARS 3)

2022 ◽  
Vol 11 (2) ◽  
pp. 349-355
Author(s):  
Jesus Morales García ◽  
Chibuike C. Udenigwe ◽  
Jorge Duitama ◽  
Andrés Fernando González Barrios

2021 ◽  
pp. 107075
Author(s):  
José Ma Ruiz-Álvarez ◽  
Teresa del Castillo-Santaella ◽  
Julia Maldonado-Valderrama ◽  
Antonio Guadix ◽  
Emilia M. Guadix ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chandraprabha Murali ◽  
Priti Mudgil ◽  
Chee-Yuen Gan ◽  
Hamadeh Tarazi ◽  
Raafat El-Awady ◽  
...  

AbstractCamel milk has been gaining immmense importance due to high nutritious value and medicinal properties. Peptides from milk proteins is gaining popularity in various therapeutics including human cancer. The study was aimed to investigate the anti-cancerous and anti-inflammatory properties of camel whey protein hydrolysates (CWPHs). CWPHs were generated at three temperatures (30 ℃, 37 ℃, and 45 ℃), two hydrolysis timepoints (120 and 360 min) and with three different enzyme concentrations (0.5, 1 and 2 %). CWPHs demonstrated an increase in anti-inflammatory effect between 732.50 (P-6.1) and 3779.16 (P-2.1) µg Dicolfenac Sodium Equivalent (DSE)/mg protein. CWPHs (P-4.3 & 5.2) inhibited growth of human colon carcinoma cells (HCT116) with an IC50 value of 231 and 221 μg/ml, respectively. P-4.3 induced G2/M cell cycle arrest and modulated the expression of Cdk1, p-Cdk1, Cyclin B1, p-histone H3, p21 and p53. Docking of two peptides (AHLEQVLLR and ALPNIDPPTVER) from CWPHs (P-4.3) identified Polo like kinase 1 as a potential target, which strongly supports our in vitro data and provides an encouraging insight into developing a novel peptide-based anticancer formulation. These results suggest that the active component, CWPHs (P-4.3), can be further studied and modeled to form a small molecule anti-cancerous therapy.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
M. Chinonye Udechukwu ◽  
Chi Dang ◽  
Chibuike C. Udenigwe

Abstract Food components possessing zinc ligands can be used to inhibit zinc-dependent enzymes. In this study, zinc-binding peptides were derived from whey protein hydrolysates, and their ultrafiltration (> 1 and < 1 kDa) fractions, produced with Esperase (WPH-Esp), Everlase and Savinase. Immobilized metal affinity chromatography (IMAC-Zn2+) increased the zinc-binding capacity of the peptide fraction (83%) when compared to WPH-Esp (23%) and its < 1 kDa fraction (40%). The increased zinc-binding capacity of the sample increased the inhibitory activity against the zinc-dependent “a disintegrin and metalloproteinase 17”. LC-MS/MS analysis using a shotgun peptidomics approach resulted in the identification of 24 peptides originating from bovine β-lactoglobulin, α-lactalbumin, serum albumin, β-casein, κ-casein, osteopontin-k, and folate receptor-α in the fraction. The identified peptides contained different combinations of the strong zinc-binding group of residues, His+Cys, Asp+Glu and Phe+Tyr, although Cys residues were absent in the sequences. In silico predictions showed that the IMAC-Zn2+ peptides were non-toxins. However, the peptides possessed poor drug-like and pharmacokinetic properties; this was possibly due to their long chain lengths (5–19 residues). Taken together, this work provided an array of food peptide-based zinc ligands for further investigation of structure-function relationships and development of nutraceuticals against inflammatory and other zinc-related diseases. Graphical abstract


2020 ◽  
Vol 13 (12) ◽  
pp. 2120-2130
Author(s):  
Clariana Zanutto Paulino da Cruz ◽  
Ricardo José de Mendonça ◽  
Luís Henrique Souza Guimaraes ◽  
Matheus Aparecido dos Santos Ramos ◽  
Saulo Santesso Garrido ◽  
...  

Nutrients ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3362
Author(s):  
Ji Eun Shin ◽  
Seok Jun Park ◽  
Seung Il Ahn ◽  
Se-Young Choung

Sarcopenia, a loss of skeletal muscle mass and function, is prevalent in older people and associated with functional decline and mortality. Protein supplementation is necessary to maintain skeletal muscle mass and whey protein hydrolysates have the best nutrient quality among food proteins. In the first study, C57BL/6 mice were subjected to immobilization for 1 week to induce muscle atrophy. Then, mice were administered with four different whey protein hydrolysates for 2 weeks with continuous immobilization. Among them, soluble whey protein hydrolysate (WP-S) had the greatest increase in grip strength, muscle weight, and cross-sectional area of muscle fiber than other whey protein hydrolysates. To investigate the molecular mechanism, we conducted another experiment with the same experimental design. WP-S significantly promoted the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway and inhibited the PI3K/Akt/forkhead box O (FoxO) pathway. In addition, it increased myosin heavy chain (MyHC) expression in both the soleus and quadriceps and changed MyHC isoform expressions. In conclusion, WP-S attenuated muscle atrophy induced by immobilization by enhancing the net protein content regulating muscle protein synthesis and degradation. Thus, it is a necessary and probable candidate for developing functional food to prevent sarcopenia.


Sign in / Sign up

Export Citation Format

Share Document