Stress Analysis and Optimization Design of Gantry Beam

2014 ◽  
Vol 543-547 ◽  
pp. 50-54
Author(s):  
Li Ming Wu ◽  
Yao Fei Li ◽  
Shi Long Yang ◽  
Ze Kai Wang

The gantry beam, which is the key part of the gantry frame is given a static analysis on the stress position with the finite element analysis, and its structure is shelled and optimized. Without changing the geometric size of the gantry beam and increasing the stiffness and strength of gantry beam by adding the strengthening ribs to gantry beam internally, reduce gantry beam quality, optimize the design of beam structure, improve the reliability of beam greatly, which laid the foundation for the further study of the gantry automatic welder.

2014 ◽  
Vol 945-949 ◽  
pp. 1135-1138
Author(s):  
Tao Liang ◽  
Chun Ling Meng ◽  
Yang Li ◽  
Xiu Hua Zhao

The finite element analysis of large air cooling tower was carried out using ABAQUS. On the basis of strength above,8 types of the axial force are analyzed and summarized, find valuable rules, and put forward the further optimization design. So that it can satisfy the strength and stability of air cooling tower, the structure is more reasonable, reduce weight, reduce the cost.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Bin Zheng ◽  
Yi Cai ◽  
Kelun Tang

Purpose The purpose of this paper is to realize the lightweight of connecting rod and meet the requirements of low energy consumption and vibration. Based on the structural design of the original connecting rod, the finite element analysis was conducted to reduce the weight and increase the natural frequencies, so as to reduce materials consumption and improve the energy efficiency of internal combustion engine. Design/methodology/approach The finite element analysis, structural optimization design and topology optimization of the connecting rod are applied. Efficient hybrid method is deployed: static and modal analysis; and structure re-design of the connecting rod based on topology optimization. Findings After the optimization of the connecting rod, the weight is reduced from 1.7907 to 1.4875 kg, with a reduction of 16.93%. The maximum equivalent stress of the optimized connecting rod is 183.97 MPa and that of the original structure is 217.18 MPa, with the reduction of 15.62%. The first, second and third natural frequencies of the optimized connecting rod are increased by 8.89%, 8.85% and 11.09%, respectively. Through the finite element analysis and based on the lightweight, the maximum equivalent stress is reduced and the low-order natural frequency is increased. Originality/value This paper presents an optimization method on the connecting rod structure. Based on the statics and modal analysis of the connecting rod and combined with the topology optimization, the size of the connecting rod is improved, and the static and dynamic characteristics of the optimized connecting rod are improved.


Author(s):  
Jing Han ◽  
Koetsu Yamazaki ◽  
Sadao Nishiyama ◽  
Ryoichi Itoh

This paper has introduced the finite element analysis (FEA) into the ergonomic design to evaluate the human feelings numerically and objectively, and then into the optimization design of beverage containers considering human factors. In the design of the end of can (the lid of can), experiments and the FEA of indenting vertically the fingertip pulp by a probe and the tab of end have been done to observe force responses and to study feelings in the fingertip. A numerical simulation of finger lifting the tab for opening the can has also been performed, and discomfort in the fingertip has been evaluated numerically to present the finger-accessibility of the tab. The comparison of finger-accessibility between two kinds of tab ring shape designs showed that the tab that may have a larger contact area with the finger is better. In the design of beverage bottles served hot drinks, the FEA of tactile sensation of heat has been performed to evaluate numerically the touch feeling of the finger when holding the hot bottle. The numerical simulations of embossing process have also been performed to evaluate the formability of various rib-shape designs. The optimum design has then been done considering the hot touch feeling as well as the metal sheet formability.


2012 ◽  
Vol 605-607 ◽  
pp. 397-400
Author(s):  
Dong Qing Lv

Completed the finite element static analysis on the crossbeam of a certain type of automatic hydraulic tile press and discussed stress and transfiguration of the crossbeam. The result can provide reference for design, and the discussion will be useful for mechanical engineering.


2014 ◽  
Vol 556-562 ◽  
pp. 1096-1099
Author(s):  
Wei Wei Tu ◽  
Han Li

This research is focused on Friction Type Monorail Crane Driving,using Solidworks software to establish three-dimensional model.Based on Ansys finite element analysis was introduced, the intensity and the structure optimization design. Monorail friction drive device is given in the stress analysis of different cross section.According to the result of the figure analyzes the stress of different locations will effect the performance of the drive.Provides a theoretical reference For optimizing the structure of improving driving devices and improving the performance of drive device.


2012 ◽  
Vol 591-593 ◽  
pp. 841-844
Author(s):  
Ping Tang ◽  
Chun Hua Pan

Using the mechanical design of the software Solid works to established the 280 t LF the ladle furnace transportation car frame three dimensional model, and by using the finite element analysis of software Cosmos/works to static analysis for the frames, revealing that the frame of structure stress and strain distribution map of the frame, and also reveals that dangerous points and dangerous sections. Using resistance strain gauge to measure 280 t ladle transportation car frame, it is concluded that the frame of stress and strain distributions. Through the electrical measurement test the results were compared with finite element analysis results, further proof that the finite element analysis of the accuracy of the results provides theory basis for the optimization design of the frames.


2011 ◽  
Vol 94-96 ◽  
pp. 2153-2156
Author(s):  
Dong Ling Yu

The mainframe of high-pressure grouting machine used for daily ceramics is the main load bearing member, and it has high strength and stiffness requirements. The finite element static analysis on mainframe is discussed in this paper for researching its stress and transfiguration. The result can provide reference for design, and the discussion has some generality and practical value engineering.


Sign in / Sign up

Export Citation Format

Share Document