Implementation of Embedded Floating Point Arithmetic Units on FPGA

2014 ◽  
Vol 550 ◽  
pp. 126-136
Author(s):  
N. Ramya Rani

:Floating point arithmetic plays a major role in scientific and embedded computing applications. But the performance of field programmable gate arrays (FPGAs) used for floating point applications is poor due to the complexity of floating point arithmetic. The implementation of floating point units on FPGAs consumes a large amount of resources and that leads to the development of embedded floating point units in FPGAs. Embedded applications like multimedia, communication and DSP algorithms use floating point arithmetic in processing graphics, Fourier transformation, coding, etc. In this paper, methodologies are presented for the implementation of embedded floating point units on FPGA. The work is focused with the aim of achieving high speed of computations and to reduce the power for evaluating expressions. An application that demands high performance floating point computation can achieve better speed and density by incorporating embedded floating point units. Additionally this paper describes a comparative study of the design of single precision and double precision pipelined floating point arithmetic units for evaluating expressions. The modules are designed using VHDL simulation in Xilinx software and implemented on VIRTEX and SPARTAN FPGAs.

Author(s):  
Ashwini Suresh Deshmukh

In multimedia Systems-on-Chips, the design of specialized IEEE-754-compliant floating point arithmetic units (FPU) is critical with respect to both operating speed and silicon area demand. Leading one anticipation is a well-known issue in the implementation of high speed FPUs. We investigated a novel leading one anticipation algorithm allowing us to significantly reduce the anticipation failure rate with respect to the state-of the art. We embedded our technique into a complete FPU and compared its performance against existing solutions, definitely showing both area savings and total latency reduction.


Author(s):  
Azzam Haidar ◽  
Harun Bayraktar ◽  
Stanimire Tomov ◽  
Jack Dongarra ◽  
Nicholas J. Higham

Double-precision floating-point arithmetic (FP64) has been the de facto standard for engineering and scientific simulations for several decades. Problem complexity and the sheer volume of data coming from various instruments and sensors motivate researchers to mix and match various approaches to optimize compute resources, including different levels of floating-point precision. In recent years, machine learning has motivated hardware support for half-precision floating-point arithmetic. A primary challenge in high-performance computing is to leverage reduced-precision and mixed-precision hardware. We show how the FP16/FP32 Tensor Cores on NVIDIA GPUs can be exploited to accelerate the solution of linear systems of equations Ax  =  b without sacrificing numerical stability. The techniques we employ include multiprecision LU factorization, the preconditioned generalized minimal residual algorithm (GMRES), and scaling and auto-adaptive rounding to avoid overflow. We also show how to efficiently handle systems with multiple right-hand sides. On the NVIDIA Quadro GV100 (Volta) GPU, we achieve a 4 × − 5 × performance increase and 5× better energy efficiency versus the standard FP64 implementation while maintaining an FP64 level of numerical stability.


Author(s):  
Jack Dongarra ◽  
Laura Grigori ◽  
Nicholas J. Higham

A number of features of today’s high-performance computers make it challenging to exploit these machines fully for computational science. These include increasing core counts but stagnant clock frequencies; the high cost of data movement; use of accelerators (GPUs, FPGAs, coprocessors), making architectures increasingly heterogeneous; and multi- ple precisions of floating-point arithmetic, including half-precision. Moreover, as well as maximizing speed and accuracy, minimizing energy consumption is an important criterion. New generations of algorithms are needed to tackle these challenges. We discuss some approaches that we can take to develop numerical algorithms for high-performance computational science, with a view to exploiting the next generation of supercomputers. This article is part of a discussion meeting issue ‘Numerical algorithms for high-performance computational science’.


Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 884
Author(s):  
Stefano Rossi ◽  
Enrico Boni

Methods of increasing complexity are currently being proposed for ultrasound (US) echographic signal processing. Graphics Processing Unit (GPU) resources allowing massive exploitation of parallel computing are ideal candidates for these tasks. Many high-performance US instruments, including open scanners like ULA-OP 256, have an architecture based only on Field-Programmable Gate Arrays (FPGAs) and/or Digital Signal Processors (DSPs). This paper proposes the implementation of the embedded NVIDIA Jetson Xavier AGX module on board ULA-OP 256. The system architecture was revised to allow the introduction of a new Peripheral Component Interconnect Express (PCIe) communication channel, while maintaining backward compatibility with all other embedded computing resources already on board. Moreover, the Input/Output (I/O) peripherals of the module make the ultrasound system independent, freeing the user from the need to use an external controlling PC.


2021 ◽  
Author(s):  
Sam Hatfield ◽  
Kristian Mogensen ◽  
Peter Dueben ◽  
Nils Wedi ◽  
Michail Diamantakis

<p>Earth-System models traditionally use double-precision, 64 bit floating-point numbers to perform arithmetic. According to orthodoxy, we must use such a relatively high level of precision in order to minimise the potential impact of rounding errors on the physical fidelity of the model. However, given the inherently imperfect formulation of our models, and the computational benefits of lower precision arithmetic, we must question this orthodoxy. At ECMWF, a single-precision, 32 bit variant of the atmospheric model IFS has been undergoing rigorous testing in preparation for operations for around 5 years. The single-precision simulations have been found to have effectively the same forecast skill as the double-precision simulations while finishing in 40% less time, thanks to the memory and cache benefits of single-precision numbers. Following these positive results, other modelling groups are now also considering single-precision as a way to accelerate their simulations.</p><p>In this presentation I will present the rationale behind the move to lower-precision floating-point arithmetic and up-to-date results from the single-precision atmospheric model at ECMWF, which will be operational imminently. I will then provide an update on the development of the single-precision ocean component at ECMWF, based on the NEMO ocean model, including a verification of quarter-degree simulations. I will also present new results from running ECMWF's coupled atmosphere-ocean-sea-ice-wave forecasting system entirely with single-precision. Finally I will discuss the feasibility of even lower levels of precision, like half-precision, which are now becoming available through GPU- and ARM-based systems such as Summit and Fugaku, respectively. The use of reduced-precision floating-point arithmetic will be an essential consideration for developing high-resolution, storm-resolving Earth-System models.</p>


Author(s):  
J. Vijay Kumar ◽  
B. Naga Raju ◽  
M. Vasu Babu ◽  
T. Ramanjappa

This article represents the implementation of low power pipelined 64-bit RISC processor on Altera MAXV CPLD device.  The design is verified for arithmetic operations of both fixed and floating point numbers, branch and logical function of RISC processor. For all the jump instruction, the processor architecture will automatically flush the data in the pipeline, so as to avoid any misbehavior. This processor contains FPU unit, which supports double precision IEEE-754 format operations very accurately. The simulation results have been verified by using ModelSim software. The ALU operations and double precision floating point arithmetic operation results are displayed on 7-Segments. The necessary code is written in Verilog HDL.


Sign in / Sign up

Export Citation Format

Share Document