Development of SnS Thin Films for Solar Cells

2014 ◽  
Vol 556-562 ◽  
pp. 278-281
Author(s):  
Zhi Gang Wang ◽  
Wen Cheng Gao ◽  
Jing Li ◽  
Ke Gao Liu

SnS thin film, a potential earth-abundant photovoltaic material, has particularly generated interest because of its nontoxic nature, the band gap of it matches well with solar spectrum and its high absorption coefficient. It provides a brief description of the development of SnS thin film for solar cells, and surveys several preparation methods of SnS thin film, then introduces the crystal structure of SnS. The effects of different doping elements and concentrations for SnS thin film on performance were outlined, and the development and the structure of solar cells based on SnS thin films were discussed. Finally, the development tendency and prospects were predicted.

Coatings ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1209 ◽  
Author(s):  
Sara Kim ◽  
Nam-Hoon Kim

When there is a choice of materials for an application, particular emphasis should be given to the development of those that are low-cost, nontoxic, and Earth-abundant. Chalcostibite CuSbSe2 has gained attention as a potential absorber material for thin-film solar cells, since it exhibits a high absorption coefficient. In this study, CuSbSe2 thin films were deposited by radio frequency magnetron cosputtering with CuSe2 and Sb targets. A series of CuSbxSe2 thin films were prepared with different Sb contents adjusted by sputtering power, followed by rapid thermal annealing. Impurity phases and surface morphology of Cu–Sb–Se systems were directly affected by the Sb sputtering power, with the formation of volatile components. The crystallinity of the CuSbSe2 thin films was also enhanced in the near-stoichiometric system at an Sb sputtering power of 15 W, and considerable degradation in crystallinity occurred with a slight increase over 19 W. Resistivity, carrier mobility, and carrier concentration of the near-stoichiometric thin film were 14.4 Ω-cm, 3.27 cm2/V∙s, and 1.33 × 1017 cm−3, respectively. The optical band gap and absorption coefficient under the same conditions were 1.7 eV and 1.75 × 105 cm−1, which are acceptable for highly efficient thin-film solar cells.


2014 ◽  
Vol 7 (6) ◽  
pp. 1931-1938 ◽  
Author(s):  
M. Johnson ◽  
S. V. Baryshev ◽  
E. Thimsen ◽  
M. Manno ◽  
X. Zhang ◽  
...  

Copper zinc tin sulfide (CZTS) is an emerging photovoltaic material comprised of earth abundant elements. Presence of very small amounts of sodium and potassium during the synthesis of thin CZTS films enhances grain growth and leads to microstructures ideally suited for solar cells.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Omid Malekan ◽  
Mehdi Adelifard ◽  
Mohamad Mehdi Bagheri Mohagheghi

Purpose In the past several years, CH3NH3PbI3 perovskite material has been extensively evaluated as an absorber layer of perovskite solar cells due to its excellent structural and optical properties, and greater than 22% conversion efficiency. However, improvement and future commercialization of solar cells based on CH3NH3PbI3 encountered restrictions due to toxicity and instability of the lead element. Recently, studies on properties of lead-free and mixture of lead with other cations perovskite thin films as light absorber materials have been reported. The purpose of this paper was the fabrication of CH3NH3Sn1-xPbxI3 thin films with different SnI2 concentrations in ambient condition, and study on the structural, morphological, optical, and photovoltaic performance of the studied solar cells. The X-ray diffraction studies revealed the formation of both CH3NH3PbI3 and CH3NH3SnI3 phases with increasing the Sn concentration, and improvement in crystallinity and morphology was also observed. All perovskite layers had a relatively high absorption coefficient >104 cm−1 in the visible wavelengths, and the bandgap values varied in the range from 1.46 to 1.63 eV. Perovskite solar cells based on these thin films have been fabricated, and device performance was investigated. Results showed that photo-conversion efficiency (PCE) for the pure CH3NH3PbI3sample was 1.20%. With adding SnI2, PCE was increased to 4.48%. Design/methodology/approach In this work, the author mixed tin and lead with different percentages in the perovskite thin film. Also, the preparation of these layers and also other layers to fabricate solar cells based on them were conducted in an open and non-glove box environment. Finally, the effect of [Sn/Pb] ratio in the CH3NH3Sn1-xPbxI3 layers on the structural, morphological, optical, electrical and photovoltaic performance have been investigated. Findings CH3NH3Sn1-xPbxI3 (x = 0.0, 0.25, 0.50, 0.75, 1.0) perovskite thin films have been grown by a spin-coating technique. It was found that as tin concentration increases, the X-ray diffraction and FESEM images studies revealed the formation of both CH3NH3PbI3 and CH3NH3SnI3 phases, and improvement in crystallinity, and morphology; all thin films had high absorption coefficient values close to 104 cm−1 in the visible region, and the direct optical bandgap in the layers decreases from 1.63 eV in pure CH3NH3SnI3 to 1.46 eV for CH3NH3Sn0.0.25Pb0.75I3 samples; all thin films had p-type conductivity, and mobility and carrier density increased; perovskite solar cells based on these thin films have been fabricated, and device performance was investigated. Results showed that photo-conversion efficiency (PCE) for the pure CH3NH3PbI3sample was 1.20%. With adding SnI2, PCE was increased to 4.48%. Originality/value The preparation method seems to be interesting as it is in an ambient environment without the protection of nitrogen or argon gas.


RSC Advances ◽  
2019 ◽  
Vol 9 (26) ◽  
pp. 14899-14909 ◽  
Author(s):  
Ibbi Y. Ahmet ◽  
Maxim Guc ◽  
Yudania Sánchez ◽  
Markus Neuschitzer ◽  
Victor Izquierdo-Roca ◽  
...  

Polymorph selective deposition of α- and π-SnS enables their evaluation as thin film PV absorber layers in various device structures.


Sign in / Sign up

Export Citation Format

Share Document