scholarly journals Evaluation of AA-CVD deposited phase pure polymorphs of SnS for thin films solar cells

RSC Advances ◽  
2019 ◽  
Vol 9 (26) ◽  
pp. 14899-14909 ◽  
Author(s):  
Ibbi Y. Ahmet ◽  
Maxim Guc ◽  
Yudania Sánchez ◽  
Markus Neuschitzer ◽  
Victor Izquierdo-Roca ◽  
...  

Polymorph selective deposition of α- and π-SnS enables their evaluation as thin film PV absorber layers in various device structures.

2012 ◽  
Vol 1447 ◽  
Author(s):  
Lakshmi Kanth Ganta ◽  
Tara P. Dhakal ◽  
Surya Rajendran ◽  
Charles R. Westgate

ABSTRACTAlthough pyrite (FeS2) is abundant, getting a single-phase pyrite thin film is difficult due to the coexistence of various phases of iron and sulfur in nature. We propose an ink-based process for attaining the pyrite phase of iron sulfide. This work involves degassing Iron (II) chloride in an octadecylamine solution and later reflux with addition of sulfur in diphenyl ether at 200°C. The process yielded phase-pure single crystalline pyrite nanocrystals which were later cleaned and dispersed in chloroform for uniform suspension. Thus obtained nanocrystals were deposited as thin films using drop casting and spin coating. Solar cells were fabricated using CdS as an n-type window layer in a superstrate configuration. When tested, the superstrate type FeS2 nanoparticle cell showed 0.03% with high Voc of 565 mV.


2020 ◽  
Vol 979 ◽  
pp. 180-184
Author(s):  
I. Karuppusamy ◽  
K. Ramachandran ◽  
S. Karuppuchamy

The CuI thin film has been successfully prepared by using cathodic electrodeposition method. The synthesized film was characterized using advanced techniques such as XRD, SEM-EDX and UV measurements. The films are crystallized in face centered cubic structure. The crystallinity is increasing for the applied potential of-0.3 V and the crystallinity deteriorates on increasing the potential above - 0.3 V. It was also observed that the applied voltage plays an important role. Homogeneously distributed triangular faceted morphology was observed from SEM. This is consistent with the result of XRD that electrodeposited CuI thin films grow preferential orientation along the (111) crystal plane.


2008 ◽  
Vol 1091 ◽  
Author(s):  
Takashi Sagawa ◽  
Osamu Yoshikawa ◽  
Hirokuni Jintoku ◽  
Makoto Takafuji ◽  
Hirotaka Ihara ◽  
...  

AbstractMorphologically controllable thin-films of a zinc-containing tetraphenylporphyrin (ZnTPP) combined with an L-glutamide lipid has been fabricated and complexation of ZnTPP with fullerene was examined for organic thin-film solar cells, which gave 3 times enhancement of solar energy-to-electricity conversion efficiency through chlorobenzene-annealing in comparison with the conversion efficiency of untreated one.


2020 ◽  
Vol 20 (6) ◽  
pp. 3622-3635 ◽  
Author(s):  
Kuldeep S. Gour ◽  
Rahul Parmar ◽  
Rahul Kumar ◽  
Vidya N. Singh

Cd is categorized as a toxic material with restricted use in electronics as there are inherent problems of treating waste and convincing consumers that it is properly sealed inside without any threat of precarious leaks. Apart from toxicity, band-gap of CdS is about 2.40–2.50 eV, which results significant photon loss in short-wavelength range which restricts the overall performance of solar cells. Thin film of Zn(O,S) is a favorable contender to substitute CdS thin film as buffer layer for CuInGaSe2 (CIGS), CuInGa(S,Se)2 (CIGSSe), Cu2ZnSn(S,Se)4 (CZTSSe) Cu2ZnSnSe4 (CZTSe), Cu2ZnSnS4 (CZTS) thin film absorber material based photovoltaic due to it made from earth abundant, low cost, non-toxic materials and its ability to improve the efficiency of chalcogenide and kesterite based photovoltaic due to wider band-gap which results in reduction of absorption loss compared to CdS. In this review, apart from mentioning various deposition technique for Zn(O,S) thin films, changes in various properties i.e., optical, morphological, and opto-electrical properties of Zn(O,S) thin film deposited using various methods utilized for fabricating solar cell based on CIGS, CIGSSe, CZTS, CZTSe and CZTSSe thin films, the material has been evaluated for all the properties of buffer layer (high transparency for incident light, good conduction band lineup with absorber material, low interface recombination, high resistivity and good device stability).


2000 ◽  
Vol 77 (9) ◽  
pp. 723-729
Author(s):  
A Ennaoui

The highest efficiency for Cu(Ga,In)Se2 (CIGS) thin-film-based solar cells has been achieved with CdS buffer layers prepared by a solution growth method known as the chemical bath deposition (CBD). With the aim of developing Cd-free chalcopyrite-based thin-film solar cells, we describe the basic concepts involved in the CBD technique. The recipes developed in our laboratory for the heterogeneous deposition of good-quality thin films of ZnO, ZnSe, and MnS are presented. In view of device optimization, the initial formation of chemical-bath-deposited ZnSe thin films on Cu(Ga,In)(S,Se)2 (CIGSS) and the subsequent development of the ZnSe/CIGSS heterojunctions were investigated by X-ray photoelectron spectroscopy (XPS). The good surface coverage was controlled by measuring changes in the valence-band electronic structure as well as changes in the In4d, Zn3d core lines. From these measurements, the growth rate was found to be around 3.6 nm/min. The valence band and the conduction band-offsets ΔEV and ΔEC between the layers were determined to be 0.60 and 1.27 eV, respectively for the CIGSS/ZnSe interface. The energy-band diagram is discussed in connection with the band-offsets detemined from XPS data. A ZnSe thickness below 10 nm has been found to be optimum for achieving a homogeneous and compact buffer layer on CIGSS with a total area efficiency of 13.7%.PACS No.: 42.70


Sign in / Sign up

Export Citation Format

Share Document