Automatic Identification of the Activity Area in Brain with Deep Neural Networks

2014 ◽  
Vol 556-562 ◽  
pp. 4941-4944
Author(s):  
Li Xiang Shi ◽  
Li Peng ◽  
Lu Lu Yue ◽  
Zhi Xing Huang

We use deep max-pooling convolutional neural networks to address a problem of neuroanatomy, namely, the automatic segmentation of cerebral cortex structures of laboratory rat depicted in stacks of Two-photon microscopy images and detect the change areas when stimulation occurs. We classify each pixel in the image by training a CNN network, using a square window to predict the probability of the central pixel for each class. After classification, we perform the post-processing on the output produced by CNN. At last, we depict the areas that we interested through a threshold value.

2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Fuyong Xing ◽  
Yuanpu Xie ◽  
Xiaoshuang Shi ◽  
Pingjun Chen ◽  
Zizhao Zhang ◽  
...  

Abstract Background Nucleus or cell detection is a fundamental task in microscopy image analysis and supports many other quantitative studies such as object counting, segmentation, tracking, etc. Deep neural networks are emerging as a powerful tool for biomedical image computing; in particular, convolutional neural networks have been widely applied to nucleus/cell detection in microscopy images. However, almost all models are tailored for specific datasets and their applicability to other microscopy image data remains unknown. Some existing studies casually learn and evaluate deep neural networks on multiple microscopy datasets, but there are still several critical, open questions to be addressed. Results We analyze the applicability of deep models specifically for nucleus detection across a wide variety of microscopy image data. More specifically, we present a fully convolutional network-based regression model and extensively evaluate it on large-scale digital pathology and microscopy image datasets, which consist of 23 organs (or cancer diseases) and come from multiple institutions. We demonstrate that for a specific target dataset, training with images from the same types of organs might be usually necessary for nucleus detection. Although the images can be visually similar due to the same staining technique and imaging protocol, deep models learned with images from different organs might not deliver desirable results and would require model fine-tuning to be on a par with those trained with target data. We also observe that training with a mixture of target and other/non-target data does not always mean a higher accuracy of nucleus detection, and it might require proper data manipulation during model training to achieve good performance. Conclusions We conduct a systematic case study on deep models for nucleus detection in a wide variety of microscopy images, aiming to address several important but previously understudied questions. We present and extensively evaluate an end-to-end, pixel-to-pixel fully convolutional regression network and report a few significant findings, some of which might have not been reported in previous studies. The model performance analysis and observations would be helpful to nucleus detection in microscopy images.


2013 ◽  
Vol 21 (8) ◽  
pp. 1074-1082 ◽  
Author(s):  
T. Bergmann ◽  
U. Maeder ◽  
M. Fiebich ◽  
M. Dickob ◽  
T.W. Nattkemper ◽  
...  

2021 ◽  
Author(s):  
Pankaj Eknath Kasar ◽  
Shivajirao M. Jadhav ◽  
Vineet Kansal

Abstract The tumor detection is major challenging task in brain tumor quantitative evaluation. In recent years, owing to non-invasive and strong soft tissue comparison, Magnetic Resonance Imaging (MRI) has gained great interest. MRI is a commonly used image modality technique to locate brain tumors. An immense amount of data is produced by the MRI. Heterogeneity, isointense and hypointense tumor properties restrict manual segmentation in a fair period of time, thus restricting the use of reliable quantitative measures in clinical practice. In the clinical practice manual segmentation task is quite time consuming and their performance is highly depended on the operator’s experience. Accurate and automated tumor segmentation techniques are also needed; however, the severe spatial and structural heterogeneity of brain tumors makes automatic segmentation a difficult job. This paper proposes fully automatic segmentation of brain tumors using encoder-decoder based convolutional neural networks. The paper focuses on well-known semantic segmentation deep neural networks i.e., UNET and SEGNET for segmenting tumors from Brain MRI images. The networks are trained and tested using freely accessible standard dataset, with Dice Similarity Coefficient (DSC) as metric for whole predicted image i.e., including tumor and background. UNET’s average DSC on test dataset is 0.76 whereas for SEGNET we got average DSC 0.67. The evaluation of results proves that UNET is having better performance than SEGNET.


2011 ◽  
Author(s):  
Vijay Raj Singh ◽  
Jagath C. Rajapakse ◽  
Hanry Yu ◽  
Peter T. C. So

Sign in / Sign up

Export Citation Format

Share Document