Design Analysis of Two Ways Shape Memory Alloy (SMA) Actuated Aerofoil

2014 ◽  
Vol 564 ◽  
pp. 340-345
Author(s):  
Mohd Roshdi Hassan ◽  
Yong Thian Haw ◽  
Mohd Nasrisyam Asri

This paper describes the design analysis of the behavior of a shape memory alloy (SMA) plate embedded into an aerofoil. Experimentation and simulation were done to fulfill this purpose. The aerofoil is made of silicone rubber material. The SMA plate which was embedded into the maximum chamber of aerofoil during the fabrication process was measured at approximately 175mm, 63mm and 3mm in length, width and thickness respectively. Experimentation was conducted to show that the SMA plate is able to produce two-way shape memory effect. Simulation was executed by using Abaqus 6.9-1 (finite element analysis software). The aerofoil profile was changed by the movement of SMA plate, which has subsequently changed the angle of aerofoil’s trailing edge. The result from the experiment shows that the aerofoil’s trailing edge has undergone a certain amount of displacement after heated. Upon cooling, the aerofoil’s trailing edge did not return to its initial position. Based on this analysis, it is clear that the simulation results are in agreement with the findings of experimental results.

Author(s):  
M Sreekumar ◽  
T Nagarajan ◽  
M Singaperumal

This paper presents the non-linear analysis of a shape memory alloy (SMA) actuated fully compliant spatial parallel mechanism. A compliant mechanism made of SMA wires as its actuators and SMA pipe as its structural member that exploits both the shape memory and superelastic effects is proposed and its static analysis using ANSYS is presented in this study. Finite element analysis in a multi-physics environment considering geometric and material non-linearities helps the user to analyse complex behaviour of a system. For the proposed mechanism, simulation results show: (a) 4 per cent strain for SMA actuation is optimal considering the geometric non-linearity of the proposed mechanism for obtaining maximum displacement; (b) buckling effect is less predominant while implementing the superelastic behaviour; and (c) the mechanism can be designed as a compliant device with one or more inflexion points by exploiting the superelasticity of the SMA pipe. The knowledge obtained from the simulation study could help in further miniaturization of the manipulator.


2011 ◽  
Vol 464 ◽  
pp. 627-631
Author(s):  
Jie Zhang ◽  
Ai Hua Sun ◽  
Le Zhu ◽  
Xiang Gu

Welding residual stress is one of the main factors that affect the strength and life of components. In order to explore the effect on residual stress of welding line by laser shock processing, finite element analysis software ANSYS is used to simulate the welding process, to calculate the distribution of welding residual stress field. On this basis, then AYSYS/LS-DYNA is used to simulate the laser shock processing on welding line. Simulation results show that residual stress distributions of weld region, heat-affected region and matrix by laser shock processing are clearly improved, and the tensile stress of weld region effectively reduce or eliminate. The simulation results and experimental results are generally consistent, it offer reasons for parameter optimization of welding and laser shock processing by finite element analysis software.


2012 ◽  
Vol 204-208 ◽  
pp. 4455-4459 ◽  
Author(s):  
Liu Hong Chang ◽  
Chang Bo Jiang ◽  
Man Jun Liao ◽  
Xiong Xiao

The explicit dynamic finite element theory is applied on the collision of ships with buoys for computer simulation. Using ANSYS/LS-DYNA finite element analysis software, the numerical simulation of the collision between the ton ship and the buoy with different structures and impact points. The collision force, deformation, displacement parameters and the weak impact points of a buoy are obtained. Based on the numerical simulation results, analysis of buoys and structural collision damages in anti-collision features are discussed, and several theoretical sugestions in anti-collision for the design of buoy are provided.


2014 ◽  
Vol 609-610 ◽  
pp. 849-855
Author(s):  
Wen Rui Ma ◽  
Guang He

Under launch impact load, LIGA nickel that manufacturing MEMS fuze safety and arming (S&A) device will have obvious strain rate effect. By using finite element analysis software ANSYS/LS-DYNA, simulation models of a small-caliber ammunition MEMS fuze setback S&A device with strain rate effect and without strain rate effect were respectively established. The results of the two simulation modules were quite different. Comparisons between experimental results and simulation results show that simulation results considering strain rate effect agree well with experimental results, which proves strain rate effect should not be ignored in the simulation of MEMS S&A device.


Author(s):  
Kenny Pagel ◽  
Jonas Esch ◽  
Daniel Hoffmann ◽  
Heiko Trautner ◽  
Simon Herrlich ◽  
...  

Abstract The steam sterilization of reusable medical instruments is a critical process. Standardized treatments with hot, saturated steam at maximum temperatures of up to 138 °C often represent a significant thermal load, which is repeated with varying number of cycles depending on the medical device. Until now, there is no possibility for medical device manufacturers to monitor how often a product has been sterilized. However, this is necessary for both safety and warranty issues, since according to the European Medical Device Regulation (EU-MDR), the manufacturer must specify how often a product can be sterilized. In this paper the actuator approach for a micromechanical “sterilization cycle counter” is presented. It is designed to autonomously record, count and store steam sterilizations directly on the instrument by combining silicon micromechanics with shape memory alloy (SMA) actuators. This enables an autonomous operation without additional energy sources such as batteries. During the steam sterilization cycle, a certain temperature limit is exceeded once and detected by the SMA. The system development aims at the heterogeneous integration of standard SMA wires into a silicon microstructure. The transformation temperatures of the SMA is thereby increased to the relevant range by prestressing. In detail, the paper first describes the approach of the counting mechanism and the possibilities and limitations of implementing and pretensioning of SMA wires in silicon microstructures. Based on that, the development of the SMA actuator geometry using an SMA Finite Element Analysis (FEA) model according to the approach of Aurichio is described. The model is validated using an up-scaled test bench of the system, in which various geometric parameters can be varied. Finally, the results will be discussed in particular regarding the MEMS process chain to be carried out in the next step.


Sign in / Sign up

Export Citation Format

Share Document