POME Treatment Efficacy as Affected by Carrier Material Size in Micro-Bioreactor System

2014 ◽  
Vol 567 ◽  
pp. 104-109
Author(s):  
Wai Loan Liew ◽  
Khalida Muda ◽  
Mohd Azraai Kassim ◽  
Kok Yan Lai ◽  
Zi Yang Si ◽  
...  

This paper presents the effect of different sizes of palm kernel shell (PKS) activated carbon as the carrier material in a micro-bioreactor system to treat the palm oil mill effluent (POME). Three different sizes of PKS activated carbon were used as the carrier material, i.e. 4.750 – 2.360 mm (large), 1.180 – 0.710 mm (average) and 0.425 – 0.300 mm (small). The systems were run for a total of 29 days under hydraulic retention time (HRT) of 24 hours. The performances of several effluent quality parameters of POME regarding the use of PKS activated carbon of different sizes were studied. PKS activated carbon with size 1.180 – 0.710 mm showed the highest removal performances for chemical oxygen demand (COD), ammoniacal-nitrogen (AN), and solids, with 41 %, 84.6 %, and 88 % of removal respectively. The system with PKS activated carbon of size 4.750 - 2.360 mm showed the highest performance in removing TP (45 %), while 1.180 – 0.710 mm size of PKS activated carbon showed the highest performance in removing TN (53 %). The system was also found to effectively reduce the effluent colour. In overall, the PKS activated carbon of size 1.180 – 0.710 mm showed the best results as a carrier material to be used in the micro-bioreactor system in treating POME compared to the other two sizes.

2016 ◽  
Vol 2 (1) ◽  
pp. 15 ◽  
Author(s):  
NorFaizah Jalani ◽  
AstimarAbdul Aziz ◽  
NoorshamsianaAbdul Wahab ◽  
WanHasamudin Wan Hassan ◽  
NahrulHayawin Zainal

Author(s):  
Y. Yerima ◽  
I. Eiroboyi ◽  
I. Eiroboyi

Biomass-based activated carbon has received large attention due to its excellent characteristics such as inexpensiveness, good absorption behaviour, and potential to reduce strong dependence towards non-renewable precursors. The potential use of Palm Kernel Shell in modified activated carbon was evaluated by using the Response Surface Methodology. In this study, a 23 three-level Central Composite Design (CCD) was used to develop a statistical model for the optimization of process variables, contact time (10-130mins) X1, pH (5.0 – 8.0) X2, and adsorbent dose (0.4 -5.0g) X3. The investigation shows that Ethylene Di-Amine Tetra-Acetic Acid modified activated carbon prepared from Palm Kernel Shell is a promising adsorbent for the removal of copper ions from aqueous solutions over a wide range of concentrations with an optimized efficiency of 99% at the solution pH of 7.2, contact time of 70 minutes and adsorbent dose of 2.1g/L. The adsorption results are in line with the linear and quadratic model representation, which is evident from the models for optimization of copper ions.


2019 ◽  
Vol 5 (3) ◽  
pp. 43 ◽  
Author(s):  
Aloysius Akaangee Pam

In this present work, a novel method for synthesis of palm kernel shell activated carbon was established using DES (choline chloride/urea)/H3PO4 as the activating agent. The pore characterization, morphology, and adsorption properties of the activated carbons were investigated. The activated carbon samples made from the same feedstock at two pyrolysis temperatures (500 and 600 °C) were compared for their ability to adsorb Pb(II) in aqueous solution. The results demonstrated that the production of the activated carbon and adsorptive properties were significantly influenced by the pyrolysis temperature and the ratio of precursor to activating agent. DES/H3PO4 activated carbon (having surface area 1413 m2/g and total pore volume 0.6181 cm3/g) demonstrated good Pb(II) removal. Although all the tested activated carbon samples adsorbed Pb(II) from aqueous solution, they demonstrated different adsorption capabilities according to their various properties. The pyrolysis temperature, however, showed little influence on the activated carbon adsorption of Pb(II) when compared to the impregnation ratio. Their good desorption performance perhaps resulted from the porous structure.


Sign in / Sign up

Export Citation Format

Share Document