Palm oil mill final discharge treatment by a continuous adsorption system using oil palm kernel shell activated carbon produced from two-in-one carbonization activation reactor system

2020 ◽  
Vol 36 ◽  
pp. 101262 ◽  
Author(s):  
Z. Nahrul Hayawin ◽  
M.F. Ibrahim ◽  
J. Nor Faizah ◽  
M. Ropandi ◽  
A.A. Astimar ◽  
...  
2016 ◽  
Vol 2 (1) ◽  
pp. 15 ◽  
Author(s):  
NorFaizah Jalani ◽  
AstimarAbdul Aziz ◽  
NoorshamsianaAbdul Wahab ◽  
WanHasamudin Wan Hassan ◽  
NahrulHayawin Zainal

2015 ◽  
Vol 77 (12) ◽  
Author(s):  
Nor Hasanah Abdul Shukor Lim ◽  
Mohd Warid Hussin ◽  
Abdul Rahman Mohd. Sam ◽  
Mostafa Samadi ◽  
Mohamed A. Ismail ◽  
...  

This paper presents the utilization of palm oil fuel ash and oil palm kernel shell as cement and sand replacement, respectively in the production of palm oil fuel ash based mortar mixes as part of new and innovative materials in the construction industry. The study includes basic properties such as water absorption, density, compressive strength, and microstructure test with regards to variations in the mix design process. In order to get better performance in terms of strength development, the ash used was subjected to heat treatment and grounded to the size of less than 2 µm. High volume of 80% palm oil fuel ash was used as cement replacement, while 25%, 50%, 75%, and 100% of oil palm kernel shell was used as sand replacement. The results indicated that the density of the mortar decreases with increasing volume of oil palm kernel ash as sand replacement. Three different types of mortar were produced with different percentages of oil palm kernel shell, which was high strength, medium strength, and low strength lightweight mortars.


2014 ◽  
Vol 567 ◽  
pp. 104-109
Author(s):  
Wai Loan Liew ◽  
Khalida Muda ◽  
Mohd Azraai Kassim ◽  
Kok Yan Lai ◽  
Zi Yang Si ◽  
...  

This paper presents the effect of different sizes of palm kernel shell (PKS) activated carbon as the carrier material in a micro-bioreactor system to treat the palm oil mill effluent (POME). Three different sizes of PKS activated carbon were used as the carrier material, i.e. 4.750 – 2.360 mm (large), 1.180 – 0.710 mm (average) and 0.425 – 0.300 mm (small). The systems were run for a total of 29 days under hydraulic retention time (HRT) of 24 hours. The performances of several effluent quality parameters of POME regarding the use of PKS activated carbon of different sizes were studied. PKS activated carbon with size 1.180 – 0.710 mm showed the highest removal performances for chemical oxygen demand (COD), ammoniacal-nitrogen (AN), and solids, with 41 %, 84.6 %, and 88 % of removal respectively. The system with PKS activated carbon of size 4.750 - 2.360 mm showed the highest performance in removing TP (45 %), while 1.180 – 0.710 mm size of PKS activated carbon showed the highest performance in removing TN (53 %). The system was also found to effectively reduce the effluent colour. In overall, the PKS activated carbon of size 1.180 – 0.710 mm showed the best results as a carrier material to be used in the micro-bioreactor system in treating POME compared to the other two sizes.


2016 ◽  
Vol 11 (4) ◽  
pp. 305-314 ◽  
Author(s):  
Bamidele V. Ayodele ◽  
Chin Kui Cheng

Abstract Malaysia is presently the world’s largest exporter of palm oil with total production of 19.22 million tonnes of crude palm oil (CPO) in 2013. Aside CPO, by-products such as empty fruit bunch (EFB), palm kernel shell (PKS), palm kernel oil (PKO), palm kernel cake (PKC) and pressed palm fibres (PPF) are produced from the palm oil mills. These biomasses can be used as potential feedstock for the production of biofuels, biogas and bioelectricity. One of the ways to fully harness the potentials of these biomasses is by employing the biorefinery concepts where all the products and by-products from oil palm are utilized for production of valuable bio-products. In this study, technological feasibility of biorefinery for the production of biodiesel, hydrogen, Fischer-Tropsch liquids (FTLs) integrated with combined heat and power (CHP) generation was investigated. Flowsheet was designed for each of the processes using Aspen HYSYS® v 8.0. Material balance was performed on a palm oil mill processing 250 tonnes per year of fresh fruit palm (FFP). Results from the material balance shows that 45.1 tonnes of refined bleached deodorized palm oil (RDBPO) and 52.4 tonnes of EFB were available for the production of biodiesel, hydrogen, FTLs and the CHP generation. The annual plant capacity of the biodiesel production is estimated to be 26,331.912 tonnes. The overall energy consumption of the whole process was estimated to be 36.0 GJ/h. This energy demand was met with power generated from the CHP which is 792 GJ/h leaving a surplus of 756 GJ/h that can be sold to the grid. The process modelling and simulation of the biorefinery process shows technological feasibility of producing valuable products from oil palm.


Author(s):  
Noraishah Shafiqah Yacob ◽  
Hassan Mohamed ◽  
Abd Halim Shamsuddin

Renewable energy is a reliable solution for addressing global warming and fossil fuel depletion issues. Due to the abundance of biomass resources, such as palm oil wastes, which are currently underutilised, this is an opportunity for Malaysia to seize and implement this renewable energy solution for power generation. Palm oil mill wastes, such as empty fruit bunch (EFB), palm mesocarp fibre (PMF), and palm kernel shell (PKS), are worth to be investigated as a possible feedstock for combustion in thermal power plants. Co-combustion or co-firing of biomass in coal-fired thermal power plants offers a significant potential to reduce harmful emissions and represents a low cost and low-risk method. This paper aims to review and compare existing biomass thermal combustion technologies globally to evaluate the potential of utilising palm oil waste with coal. Before undergoing various pretreatment options, it is necessary to understand the feedstock characteristics for thermal power plant combustion. It is recommended to implement the combustion of palm oil wastes with coal in Malaysia to reduce harmful pollution. Based on the findings, Malaysia appears to be on the right track to optimise the use of palm oil wastes for electricity generation. The enhanced usage will reduce the negative impact of greenhouse gas (GHG) emissions.


Author(s):  
N. S. A. Yaro ◽  
◽  
M. Napiah ◽  
M. H. Sutanto ◽  
M. R. Hainin ◽  
...  

The advances in industrial technology have led to a major rise in the amount and forms of residue, especially during the processing of agricultural products. With the paradigm shift towards renewable energy and sustainability, there is much emphasis on biomass energy around the world which generates an immense volume of residues yearly. These residues are burgeoning issues because they are not effectively managed and utilized. Hence, one solution is utilizing them in the pavement industry. This article focuses on palm oil mill residues that are abundantly available and discarded in Malaysia. This study evaluates published works of literature relating to the utilization of these residues like the Palm Oil Fiber (POF), Palm Oil Fuel Ash (POFA), and Palm Oil Clinker (POC) and Palm Kernel Shell (PKS) in the pavement industry. The outcome of the review acknowledges the greater sustainability potential of these residues with affirmative and satisfactory performance via the result of numerous research work. Also, with a reduction in CO2-emission, low radioactivity, and heavy metal leaching level. Therefore, the review suggests more exploration and utilization of the residue in the pavement industry since it promotes safety and harness sustainability.


Sign in / Sign up

Export Citation Format

Share Document