Test Technique Research for the Hinge Moment of a Grid Fin in High Speed Wind Tunnel

2014 ◽  
Vol 574 ◽  
pp. 480-484
Author(s):  
Jian Zhong Chen ◽  
Pei Qing Liu

In order to study the test technique for the hinge moment of a grid fin in wind tunnel, a platform based on half model support technique was established in FL-23 and FL-31 wind tunnel in China Aerodynamics Research & Development Center (CARDC). The platform developed a wind tunnel test balance, rudder control system and the aerodynamics measurement system. This test technique was important to optimize aerodynamic configurations of a grid fin, design or evaluate the capability of the rudder control system. Nomenclature

2012 ◽  
Vol 190-191 ◽  
pp. 1273-1277 ◽  
Author(s):  
Zheng Yu Zhang ◽  
Zhong Xiang Sun ◽  
Xu Hui Huang ◽  
Yan Sun

The advanced precision of drag coefficient is 0.0001 for the high speed wind tunnel test of measuring forces, the model’s angle of attack precision is ≤0.01°following errors distribution. A videogrammetric method of model’s attitude is therefore proposed, its uncertainty is investigated, and a compensation method of its systematic error is also presented by this paper. The three engineering videogrammetric experiments of attack angle in 2 meter supersonic wind tunnel testing have demonstrated that measuring standard deviation of videogrammetric measurement system established by this paper is ≤0.0094°, in addition it neither destroys the model’s shape, nor changes the stiffness or strength, so it is useful and effective.


2007 ◽  
Vol 2007.82 (0) ◽  
pp. _10-30_
Author(s):  
Ken-taro NAKAGAWA ◽  
Ryo NOMURA ◽  
Hideki KAWAMOTO ◽  
Kazuto NAKAI ◽  
Hirofumi YAMAMORI

2005 ◽  
Author(s):  
Vincent G. Chapin ◽  
Romaric Neyhousser ◽  
Stephane Jamme ◽  
Guillaume Dulliand ◽  
Patrick Chassaing

In this paper we propose a rational viscous Computational Fluid Dynamics (CFD) methodology applied to sailing yacht rig aerodynamic design and analysis. After an outlook of present challenges in high speed sailing, we emphasized the necessity of innovation and CFD to conceive, validate and optimize new aero-hydrodynamic concepts. Then, we present our CFD methodology through CAD, mesh generation, numerical and physical modelling choices, and their validation on typical rig configurations through wind-tunnel test comparisons. The methodology defined, we illustrate the relevance and wide potential of advanced numerical tools to investigate sailing yacht rig design questions like the relation between sail camber, propulsive force and aerodynamic finesse, and like the mast-mainsail non linear interaction. Through these examples, it is shown how sailing yacht rig improvements may be drawn by using viscous CFD based on Reynolds Averaged Navier-Stokes equations (RANS). Then the extensive use of viscous CFD, rather than wind-tunnel tests on scale models, for the evaluation or ranking of improved designs with increased time savings. Viscous CFD methodology is used on a preliminary study of the complex and largely unknown Yves Parlier Hydraplaneur double rig. We show how it is possible to increase our understanding of his flow physics with strong sail interactions, and we hope this methodology will open new roads toward optimized design. Throughout the paper, the necessary comparison between CFD and wind-tunnel test will be presented to focus on limitations and drawbacks of viscous CFD tools, and to address future improvements.


2014 ◽  
Vol 986-987 ◽  
pp. 1629-1633
Author(s):  
Zheng Yu Zhang ◽  
Xu Hui Huang ◽  
Jiang Yin ◽  
Han Xuan Lai

Videogrammetric measurement is a research focus for the organizations of wind tunnel test because of its no special requirements on the test model, its key techniques for the vibration environment of the high speed wind tunnel are introduced by this paper, such as the solution of exterior parameters with big-angle large overlap, the algorithm of image processing for extracting marked point, the method of camera calibration and wave-front distortion field measurement. The great requirements and application prospects of videogrammetry in wind tunnel fine testing have been demonstrated by several practice experiments, including to measure test model’s angle of attack, dynamic deformations and wave-front distortion field in high speed wind tunnels whose test section size is 2 meters.


Sign in / Sign up

Export Citation Format

Share Document