The Prediction of Northern Slope Deformation and Failure Caused by the Transformation of Open-Pit to Underground Mining in the Yanqianshan Iron Mine

2014 ◽  
Vol 580-583 ◽  
pp. 364-370
Author(s):  
An Lin Shao ◽  
Hai Long Feng

<span><p class="TTPAbstract"><span lang="EN-US">The Yanqianshan<a name="OLE_LINK94"></a><a name="OLE_LINK93"></a> iron mine is preparing to transform from an open-pit mine to an underground mine. We adopt the <a name="OLE_LINK104"></a><a name="OLE_LINK103"></a>non-pillar sublevel caving approach to exploit the particularly thick steep ore bodies within the range from -183 m to -500 m from top to bottom. According to the features of ore body distribution and the approaches of exploitation, we expect that underground mining will result in <a name="OLE_LINK102"></a><a name="OLE_LINK101"></a>the loss of stability on the northern slope of the open pit, causing traction-type landslides. Moreover, along with increasing the depth of the mining operation, the range of slope failure will continue to expand and further affect the safety of drainage features and roads distributed on the north side of the open pit. For this purpose, we select f</span><span lang="EN-US">our</span><span lang="EN-US"> sections along the trending direction of ore bodies and apply the limit equilibrium method to predict the failure process and characteristics on the northern slope according to the stratified mining process.</span><span lang="EN-US"><o:p></o:p></span></p>

2019 ◽  
Vol 2019 ◽  
pp. 1-26
Author(s):  
Yingpeng Hu ◽  
Fengyu Ren ◽  
Hangxing Ding ◽  
Yu Fu ◽  
Baohui Tan

Mining under an open pit slope results in the collapse and slide of the slope. In this paper, a combination of methods including Google Earth and field investigations is applied to investigate the process of eastern slope failure induced by underground mining in the Yanqianshan Iron Mine over five years. According to the observed ground deformation features, the geomorphic zone of the eastern slope can be divided into four regions (caved rock zone, cracking zone, toppling zone, and sliding zone). Break angles and fracture initiation angles at different times are counted separately. Based on the above work, the process of initiation and development of slope failure is studied. The analysis results show that the process of slope failure could be chronologically divided into three stages. First, a collapse pit, caused by the falling of the overlying strata above the goaf, appeared on the eastern slope. Then, the rock mass around the collapse pit slid into the pit to form a small landslide. Finally, because of mining disturbances and rock creep, a large landslide occurred on the northeastern phyllite slope. The control mechanisms of each failure stage are discussed separately. Finally, the RFPA3D code is employed to simulate the slope failure process under the influence of underground mining. The results are consistent with the field observations, which provided information on deformation failure and the mechanics of the slope that could not be directly observed in the field and deepened the mechanism analysis.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Xiaoshuang Li ◽  
Yunming Wang ◽  
Shun Yang ◽  
Jun Xiong ◽  
Kui Zhao

Abstract This paper takes the deep ore body of Yunnan Phosphate Group Co. Ltd, the largest open-pit chemical mining enterprise in China, as the research background, and systematically introduces the technical problems recognised by many Chinese researchers in the past eight years on the open-pit to underground mining of gently inclined thin to medium-thick ore bodies with a soft interlayer. It shows that the mining of open-pit transferred to underground is a complex engineering system, and the underground stope surrounding rock and overlying strata present a nonlinear failure process. Through mining process innovation, mining method innovation and improvement, research was undertaken on new processes and technologies for phosphorus mining under complex conditions. The relevant research results not only have important economic value and academic significance for Yunnan Phosphate Group Co. Ltd. but also have important guidance and impetus to the exploitation of a large number of similar phosphate resources in China.


2013 ◽  
Vol 671-674 ◽  
pp. 245-250
Author(s):  
Wen Hui Tan ◽  
Ya Liang Li ◽  
Cong Cong Li

At present, in-situ stress was not considered in Limit Equilibrium Method (LEM) of slopes, the influence of in-situ stress is very small on the stability of conventional slopes, but in deep-depressed open-pit mines, the influence should not be neglected. Formula for calculating the Factor of Safety (FOS) under the effect of horizontal in-situ stress was deduced using General Slice Method (GSM) of two-dimensional (2D) limit equilibrium method in this paper,a corresponding program SSLOPE was built, and the software was used in a deep- depressed open-pit iron mine. The results show that the FOS of the slope decreased by 20% when horizontal in-situ stress is considered, some reinforcements must be taken. Therefore, the influence of in-situ stress on slope stability should be taken into account in deep open –pit mines.


2014 ◽  
Vol 1010-1012 ◽  
pp. 1475-1481
Author(s):  
Shi Guo Sun ◽  
Yanan Yi ◽  
Lu Jin ◽  
Jia Huan Shi

As this mining area has a shallow coal seam and a dump, therefore, the mining for the deep resources uses the method of transition from open-pit to underground without protective coal column. In this paper, the numerical simulation method is used to analysis the surface subsidence and slope stability from the two different mining schemes which are from inside to outside, and from outside to inside, in order to obtain the optimization of mining scheme. And settlement and slope stability of rock body are further analyzed from two aspects of fully exploit from the tendency and from toward, the result of an overall slip slope failure caused by underground mining is found. So that in the process of exploitation, corresponding prevention and control measures to the slope safety has been put forward, ensuring smooth production.


2012 ◽  
Vol 152-154 ◽  
pp. 802-808
Author(s):  
Fei Zhang ◽  
Jing Cao ◽  
Ming Chen ◽  
Lei Peng

Combining the explicit Lagrangian difference method for the continuum body and strength reduction technology, this paper analyzed the stability of Xian Feng open-pit. The generalized shear strain and plastic strain interconnected within the weak structural plane of slope are used as criterion to identify slope failure state. Analysis of the example verifies that the criterion is rational. With the calculate model, it can predict the open-pit ultra-high slope stability after five years. Its results are similar to the traditional limit equilibrium method. Therefore, the method is reasonably practicable. So the result will be important significance to guide the post-construction of mine.


2018 ◽  
Vol 2018 ◽  
pp. 1-17
Author(s):  
Baohui Tan ◽  
Fengyu Ren ◽  
Youjun Ning ◽  
Rongxing He ◽  
Qiang Zhu

A new mining scheme by employing the induced caving mining method to exploit hanging-wall ore-body during the transition from open pit to underground mining is proposed. The basic idea is to use the mined-out area generated by the planned mining of the hanging-wall ore-body to absorb the collapsed slope body, so as to avoid the influence of the inner-slope mining to the normal open-pit mining and guarantee mining efficiency during the transition stage. Numerical simulation study on the process of induced caving mining of hanging-wall ore-body is carried out based on the practical engineering setting of the Hainan iron mine, China, by employing the numerical method of discontinuous deformation analysis (DDA). The impact of rock mass structure on the mechanism of slope instability development and the mining hazard assessment in the new mining scheme is investigated. The influence of mining sequence on slope instability development and mining safety is also analyzed by taking the hanging-wall ore-body mining under the southern anti-dip slope at the Hainan iron mine as an example, and eventually a reliable mining scheme via induced caving is obtained. The numerical study proves the feasibility of the proposed new mining scheme for hanging-wall ore-body and provides theoretical and technical support for its application in practical mining activities.


Author(s):  
Xuebing Pei ◽  
Renjie Zhou ◽  
Nengxiong Xu ◽  
Xiaoqiang Liu ◽  
Jingping Liu

Sign in / Sign up

Export Citation Format

Share Document