Effects of CRTS II Unballasted Track on Seismic Response of High-Speed Railway Bridge

2014 ◽  
Vol 584-586 ◽  
pp. 2099-2104 ◽  
Author(s):  
Yong Liang Zhang ◽  
Pei Shan Wang ◽  
Ji Dong Zhao

Based on properties of high-speed railway bridge and rail system restraints, the rail-bridge model is established by considering CRTS II unballasted track and bridge structure. The results show that the effect of CRTS II system restraints on seismic response for multi-span simply supported girder bridge is greater so the rail-bridge model should be adopted in earthquake response analysis. Due to the effect of longitudinal stiffness of the railway and bridge transitional section such as terminal spine, the more significant is unloading for seismic response of the side piers if the fewer is the number for the rear-structure spans.

Author(s):  
Zhihui Zhu ◽  
Yongjiu Tang ◽  
Zhenning Ba ◽  
Kun Wang ◽  
Wei Gong

AbstractTo explore the effect of canyon topography on the seismic response of railway irregular bridge–track system that crosses a V-shaped canyon, seismic ground motions of the horizontal site and V-shaped canyon site were simulated through theoretical analysis with 12 earthquake records selected from the Pacific Earthquake Engineering Research Center (PEER) Strong Ground Motion Database matching the site condition of the bridge. Nonlinear seismic response analyses of an existing 11-span irregular simply supported railway bridge–track system were performed under the simulated spatially varying ground motions. The effects of the V-shaped canyon topography on the peak ground acceleration at bridge foundations and seismic responses of the bridge–track system were analyzed. Comparisons between the results of horizontal and V-shaped canyon sites show that the top relative displacement between adjacent piers at the junction of the incident side and the back side of the V-shaped site is almost two times that of the horizontal site, which also determines the seismic response of the fastener. The maximum displacement of the fastener occurs in the V-shaped canyon site and is 1.4 times larger than that in the horizontal site. Neglecting the effect of V-shaped canyon leads to the inappropriate assessment of the maximum seismic response of the irregular high-speed railway bridge–track system. Moreover, engineers should focus on the girder end to the left or right of the two fasteners within the distance of track seismic damage.


2011 ◽  
Vol 675-677 ◽  
pp. 1175-1178
Author(s):  
Ling Kun Chen ◽  
Li Zhong Jiang ◽  
Peng Liu

Basin rubber bearings are frequently used in high-speed railway bridge or passenger special line railway bridge, lead rubber bearings (LRB) are infrequently used in those railway bridges nowdays, the study on earthquake-resistant capability of railway bridge fabricated isolation bearing - the intelligent and functional structure - would be beneficial in engineering practices. Elasto-plastic earthquake responses of high-speed railway bridges fabricated LRB are studied by means of the finite element program, earthquake responses of railway bridges under high-speed vehicles and different earthquake action fabricated and unfabricated isolation bearing are calculated respectively. The results show that: plastic hinge will develop at the bottom of piers in regard to railway bridges with mid-high and low pier; LRB can reduce displacement and inner forces of structures and improve earthquake-resistant capability of structures effectively.


2021 ◽  
Author(s):  
Yuntai Zhang ◽  
Lizhong Jiang ◽  
Wangbao Zhou ◽  
Zhipeng Lai ◽  
Xiang Liu ◽  
...  

Abstract In this paper, the Difference of Seismic Response across Different Spans (DSR) in the longitudinal distribution of High-Speed Railway Multi-spans Simply Supported Bridge (HSRSB) under longitudinal earthquake excitation is investigated, and an evaluation method which can intuitively reflect the difference of seismic response is proposed. A feasible way to strengthen the connection stiffness between adjacent girders is proposed to control DSR. The rationality of the finite element model used is verified by comparing the numerical results with the experimental ones, showing a satisfactory agreement. Comparing the seismic response of a bridge model considering the subgrade-track constraints (BCTM) and a bridge model without subgrade-track constraints (BWTM), it is found that the DSR in the longitudinal distribution causes some new disadvantages, which are neglected in BWTM. The BCTM considering DLC generates a model called BCDM. The effect of the number of span on DSR are studied based on BCDM. The analysis of this model showed that DLC suppresses the DSR and reduces the seismic response of most bridge components. It also transfers the seismic disadvantage from the bridge part to the subgrade-track structure. As it is more convenient and cost-effective to repair the base plate of the subgrade than the bridge components after earthquake seismic event, this disadvantage transfer is in favor of forming a new anti-seismic system that subgrade-track structure is used to protect the bridge part.


2011 ◽  
Vol 243-249 ◽  
pp. 3844-3847 ◽  
Author(s):  
Ling Kun Chen ◽  
Li Zhong Jiang ◽  
Zhi Ping Zeng ◽  
Bo Fu Luo

The responses of high-speed railway bridge subjected to seismic load were investigated by numerical simulation, the whole finite element model of the multi-span bridge simply supported bridge was set up, and natural vibration properties of structure were analyzed. According to theory of elasticity and elastic-plasticity, parametric study was conducted to assess the influences of different speeds, strong motion record, pier height and earthquake acceleration on the seismic capability of high-speed bridge subjected to different strength of the earthquake, the finite element soft ware and moment-curvature program were employed to calculate the earthquake responses of bridge. The calculation results show that, with the increase of train speed, pier height and earthquake intensity, the earthquake responses of bridge are increase in general, and the bottom of piers step into states of elastic-plasticity under high-level earthquake, elastic-plastic deformation is larger, the stirrup encryption measures should be carried out.


2019 ◽  
Vol 120 (3) ◽  
pp. 491-515 ◽  
Author(s):  
Wei Guo ◽  
Chen Zeng ◽  
Hongye Gou ◽  
Yao Hu ◽  
Hengchao Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document