Engineering Realization of Dual-Target DPVS on Expressway Fog Detection

2014 ◽  
Vol 587-589 ◽  
pp. 2089-2095
Author(s):  
Qin Guan

Digital photographic visibility system (DPVS) based on binocular targets is a method using digital camera and image processing technology for visibility detection. In order to obtain accurate results, the function and installation methods for main components of video visibility detection system including artificial objects, cameras and other parts are designed delicately. Also the article explains the image processing algorithm. From this analysis, the detection system engineering and implementation are not complicated. In 2013, this video visibility detection method has been applied to enhance foggy area security system in Anhui Province, Bengbu - Huainan expressway, and achieved good results.

Author(s):  
Victor Fernandez ◽  
Javier Chavez ◽  
Guillermo Kemper

This work proposes a portable, handheld electronic device, which measures the cleanliness in fiber optic connectors via digital image processing and artificial neural networks. Its purpose is to reduce the evaluation subjectivity in visual inspection done by human experts. Although devices with this purpose already exist, they tend to be cost-prohibitive and do not take advantage of neither image processing nor artificial intelligence to improve their results. The device consists of an optical microscope for fiber optic connector analysis, a digital camera adapter, a reduced-board computer, an image processing algorithm, a neural network algorithm and an LCD screen for equipment operation and results visualization. The image processing algorithm applies grayscale histogram equalization, Gaussian filtering, Canny filtering, Hough transform, region of interest segmentation and obtaining radiometric descriptors as inputs to the neural network. Validation consisted of comparing the results by the proposed device with those obtained by agreeing human experts via visual inspection. Results yield an average Cohen's Kappa of 0.926, which implies a very satisfactory performance by the proposed device.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Soo Hyun Park ◽  
Sang Ha Noh ◽  
Michael J. McCarthy ◽  
Seong Min Kim

AbstractThis study was carried out to develop a prediction model for soluble solid content (SSC) of intact chestnut and to detect internal defects using nuclear magnetic resonance (NMR) relaxometry and magnetic resonance imaging (MRI). Inversion recovery and Carr–Purcell–Meiboom–Gill (CPMG) pulse sequences used to determine the longitudinal (T1) and transverse (T2) relaxation times, respectively. Partial least squares regression (PLSR) was adopted to predict SSCs of chestnuts with NMR data and histograms from MR images. The coefficient of determination (R2), root mean square error of prediction (RMSEP), ratio of prediction to deviation (RPD), and the ratio of error range (RER) of the optimized model to predict SSC were 0.77, 1.41 °Brix, 1.86, and 11.31 with a validation set. Furthermore, an image-processing algorithm has been developed to detect internal defects such as decay, mold, and cavity using MR images. The classification applied with the developed image processing algorithm was over 94% accurate to classify. Based on the results obtained, it was determined that the NMR signal could be applied for grading several levels by SSC, and MRI could be used to evaluate the internal qualities of chestnuts.


Author(s):  
Chen Liu ◽  
Yude Dong ◽  
Yanli Wei ◽  
Jiangtao Wang ◽  
Hongling Li

The internal structure analysis of radial tires is of great significance to improve vehicle safety and during tire research. In order to perform the digital analysis and detection of the internal composition in radial tire cross-sections, a detection method based on digital image processing was proposed. The research was carried out as follows: (a) the distribution detection and parametric analysis of the bead wire, steel belt, and carcass in the tire section were performed by means of digital image processing, connected domain extraction, and Hough transform; (b) using the angle of location distribution and area relationship, the detection data were optimized through coordinate and quantity relationship constraints; (c) a detection system for tire cross-section components was designed using the MATLAB platform. Our experimental results showed that this method displayed a good detection performance, and important practical significance for the research and manufacture of tires.


1995 ◽  
Vol 11 (5) ◽  
pp. 751-757 ◽  
Author(s):  
J. A. Throop ◽  
D. J. Aneshansley ◽  
B. L. Upchurch

2011 ◽  
Vol 36 (1) ◽  
pp. 48-57 ◽  
Author(s):  
Kwang-Wook Seo ◽  
Hyeon-Tae Kim ◽  
Dae-Weon Lee ◽  
Yong-Cheol Yoon ◽  
Dong-Yoon Choi

Sign in / Sign up

Export Citation Format

Share Document