Deep Hole of AISI P20 Mold Steel Material by Electrical Discharge Machining

2014 ◽  
Vol 590 ◽  
pp. 244-248
Author(s):  
Jamkamon Kamonpong ◽  
Pichai Janmanee

This research aimed to study the machining efficiency of AISI P20 steel by Electrical Discharge Machining (EDM) using rod copper electrode to machining material by 50 mm depth of machining was mainly assessed from Materials Removal Rate (MRR) and Electrode Wear Ratio (EWR). From the experiment designed to use Taguchi technique of data analysis and suitable parameter prediction, the highest MRR was at on-time of 150 μs, off-time of 2 μs and electric current level was at 15 A or 0.25 A/mm2. Predicted value was at 19.2395 mm3/min which was equal to real experiment, showing Materials Removal Rate of 19.647 mm3/min (with error of 2.12 percent) .Moreover, it was found that gap would increase with the size of electrode and depth of machining caused by movement of particles removed from side surface of electrode, which cause micro sparks at the side of the material workpiece.

Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 148
Author(s):  
Suppawat Chuvaree ◽  
Kannachai Kanlayasiri

This research investigates the effect of machining parameters on material removal rate, electrode wear ratio, and gap clearance of macro deep holes with a depth-to-diameter ratio over four. The experiments were carried out using electrical discharge machining with side flushing and multi-aperture flushing to improve the machining performance and surface integrity. The machining parameters were pulse on-time, pulse off-time, current, and electrode rotation. Response surface methodology and the desirability function were used to optimize the electrical discharge machining parameters. The results showed that pulse on-time, current, and electrode rotation were positively correlated with the material removal rate. The electrode wear ratio was inversely correlated with pulse on-time and electrode rotation but positively correlated with current. Gap clearance was positively correlated with pulse on-time but inversely correlated with pulse off-time, current, and electrode rotation. The optimal machining condition of electrical discharge machining with side flushing was 100 µs pulse on-time, 20 µs pulse off-time, 15 A current, and 70 rpm electrode rotation; and that of electrical discharge machining with multi-aperture flushing was 130 µs, 2 µs, 15 A, and 70 rpm. The novelty of this research lies in the use of multi-aperture flushing to improve the machining performance, enable a more uniform GC profile, and minimize the incidence of recast layer.


2013 ◽  
Vol 315 ◽  
pp. 30-34
Author(s):  
Muhammad Zulhisham Ahmed Zaki ◽  
M. Azuddin

This paper presents the investigation on Electrical Discharge Machining (EDM) on ASSAB 618 steel using copper electrode. The sparking power was generated using Resistor Capacitor (RC) Circuit and not usual Transistor Pulse Generator Circuit. The performance of the electrodes in the EDM RC circuit was evaluated based on the achieved surface roughness with respect to material removal rate (MRR) and electrode wear ratio (EWR). In this study, investigations have been conducted with surface finish at different discharge energy output. It was found that the surface characteristics are dependent mostly on the discharge energy during machining. The fine finish electrical discharge machining requires minimization of the discharge energy supplied into the gap. In addition, the surface finish was found to be influenced greatly by the electrical and thermal properties of the electrode material.


2013 ◽  
Vol 465-466 ◽  
pp. 1214-1218 ◽  
Author(s):  
Mohd Amran Ali ◽  
Laily Suraya ◽  
Halida Ilyani Kamarudin Nor ◽  
Nur Izan Syahriah Hussein ◽  
Mohd Razali Muhamad ◽  
...  

The machining ability of electrical discharge machining (EDM) die-sinking on aluminium LM6 (Al-Sil2) as a new material is investigated.The objective of this paper is to determine the relationship between the machining parameters which are pulse-on time, pulse-off time and peak current on the material characteristics such as material removal rate (MRR), electrode wear rate (EWR) and surface roughness (Ra). Tungsten copper tool of diameter 10mm was chosen as an electrode. Design of experiment using Taguchi method was used to develop experimental matrix and optimize the MRR, EWR and Ra. The analysis was done using the Minitab software. It is found that the current and pulse on time are significantly affected the MRR, EWR and Ra while pulse off time and voltage are less significant factor that affected the responses. From the Taguchi method, the best setting of optimum value was obtained. Thus, it shows that Taguchi method is the best quality tools that can be applied for production.


2012 ◽  
Vol 488-489 ◽  
pp. 871-875
Author(s):  
V. Anandakrishnan ◽  
V. Senthilkumar

Copper based metal matrix composite reinforced with Boron Carbide is a newly developed Electrical Discharge Machining (EDM) electrode showing better performance than the conventional copper based electrode. Right selection of machining parameters such as current, pulse on time and pulse off time is one of the most important aspects in EDM. In this paper an attempt has been made to develop mathematical models for relating the Material Removal Rate (MRR), Tool Removal Rate (TRR) and Surface roughness (Ra) to machining parameters (current, pulse-on time and pulse-off time). Furthermore, a study was carried out to analyze thSubscript texte effects of machining parameters on various performance parameters such as, MRR, TRR and Ra. The results of Analysis of Variance (ANOVA) indicate that the proposed mathematical models, can adequately describe the performance within the limits of the factors being studied. Response surface modeling is used to develop surface and contour graphs to analyze the effects of EDM input parameters on outer parameters.


Author(s):  
Omer Eyercioglu ◽  
Kursad Gov

This study presents an experimental investigation of small hole electrical discharge machining of Al-Mg-Ti alloys. A series of drilling operations were carried out for exploring the effect of magnesium content. Holes of 2 mm diameter and 15 mm depth were drilled using tubular single-hole rotary brass electrodes. The rates of material removal and electrode wear, surface roughness, overcut, average recast layer thickness, taper height and angle were studied for Al-Mg-Ti alloys contain 2%, 4%, 6%, 8%, 10%, 12%, and 14% Mg. The results show that the material removal rate is increasing with increasing Mg content while the rate of electrode wear is almost unchanged. Due to decreasing the melting temperature of the Al-Mg-Ti alloy with increasing Mg content, more metal melts and vaporizes during electrical discharge machining drilling. Therefore, more overcut and taper, thicker white layer, and rougher surfaces were measured for higher Mg content.


2012 ◽  
Vol 622-623 ◽  
pp. 19-24
Author(s):  
P. Balasubramanian ◽  
Thiyagarajan Senthilvelan

In this study, input parameters of Electrical Discharge machining (EDM) process have been optimised for two different materials EN-8 and Die steel-D3 were machined by using sintered copper electrode. Analysis of variance (ANOVA) was applied to study the influences of process parameters viz: - peak current, pulse on time, di-electric pressure and diameter of electrode on material removal rate (MRR), tool wear rate (TWR) and surface roughness (SR) for both materials. Response surface methodology (RSM) has been applied to optimise the multi responses in order to get maximum MRR, minimum TWR and minimum SR. Furthermore, mathematical model has been formulated to estimate the corresponding output responses for both work pieces. It has been observed that compared to EN 8 material, the MRR value is low and TWR is high for D3 material. However the SR value is marginally lower than obtained in EN8.R2 value is above 0.90 for both work pieces.


2015 ◽  
Vol 14 (03) ◽  
pp. 189-202 ◽  
Author(s):  
V. Vikram Reddy ◽  
P. Madar Valli ◽  
A. Kumar ◽  
Ch. Sridhar Reddy

In the present work, an investigation has been made into the electrical discharge machining process during machining of precipitation hardening stainless steel PH17-4. Taguchi method is used to formulate the experimental layout, to analyze the effect of each process parameter on machining characteristics and to predict the optimal choice for each electrical discharge machining process parameters namely, peak current, pulse on time and pulse off time that give up optimal process performance characteristics such as material removal rate, surface roughness, tool wear rate and surface hardness. To identify the significance of parameters on measured response, the analysis of variance has been done. It is found that parameters peak current and pulse on time have the significant affect on material removal rate, surface roughness, tool wear rate and surface hardness. However, parameter pulse off time has significant affect on material removal rate. Confirmation tests are conducted at their respective optimum parametric settings to verify the predicted optimal values of performance characteristics.


Sign in / Sign up

Export Citation Format

Share Document