Pneumatic Transport of Coarse Grain Particle Using Air Mass Balance Model

2014 ◽  
Vol 592-594 ◽  
pp. 1940-1944
Author(s):  
Abhisekh Mukherjee ◽  
Mrinmoy Dhar ◽  
Nilkanta Barman

In this work, the pneumatic transport of coarse grain particles (alumina) through a horizontal pipe is considered. Corresponding flow of the mixture is assumed as a two-phase one-dimensional flow. The present work considers a air mass balance model. A MATLAB program is developed to update the governing equations. Since a good agreement is observed between the present prediction and the result available in the literature, the model is used for further investigation. The variation of pressure drop, velocity and mass flow rate along the length of pipe for both low and high volume flow rate is predicted. It is observed that the pneumatic transport of the alumina particles is permitted up to a limiting length of the pipe due to a huge pressure drop in the pipe at very high velocity. Corresponding limiting length of the pipe with different mixture velocities is predicted.

Author(s):  
Linden B. Huhmann ◽  
Charles F. Harvey ◽  
Ana Navas-Acien ◽  
Joseph Graziano ◽  
Vesna Slavkovich ◽  
...  

1990 ◽  
Vol 26 (5) ◽  
pp. 1079-1092 ◽  
Author(s):  
Richard Barry ◽  
Marcel Prévost ◽  
Jean Stein ◽  
Andre P. Plamondon

Author(s):  
Gerardo L. Augusto ◽  
Alvin B. Culaba ◽  
Laurence A. Gan Lim

The design criteria of converter cooling system for a 2.5 MW permanent magnet direct-drive wind turbine generator were investigated. Two (2) distribution networks with pipe sizes of DN40 and DN50 were used as basis for fluid flow analysis. The theoretical system pressure drop and system volume flow rate of converter cooling system were calculated using the governing equations of mass conservation, pump performance curve and distribution network characteristics. The system of nonlinear equations was solved using multivariable Newton-Raphson method with the solution vector determined using LU decomposition method. Numerical results suggest that the DN50 pipe provides a pressure drop limit of less than 300 Pa/m in the converter cooling system better than the pressure drop obtained from a DN40 pipe. The system volume flow rate of DN50 pipe was found to be above the operating limit of heat exchanger requirement of 135.30 L/min which needs to dissipate heat with a minimum of 50 kW.


1999 ◽  
Vol 45 (151) ◽  
pp. 559-567 ◽  
Author(s):  
Rijan Bhakta Kayastha ◽  
Tetsuo Ohata ◽  
Yutaka Ageta

AbstractA mass-balance model based on the energy balance at the snow or ice surface is formulated, with particular attention paid to processes affecting absorption of radiation. The model is applied to a small glacier, Glacier AX010 in the Nepalese Himalaya, and tests of its mass-balance sensitivity to input and climatic parameters are carried out. Calculated and observed area-averaged mass balances of the glacier during summer 1978 (June-September) show good agreement, namely -0.44 and -0.46 m w.e., respectively.Results show the mass balance is strongly sensitive to snow or ice albedo, to the effects of screening by surrounding mountain walls, to areal variations in multiple reflection between clouds and the glacier surface, and to thin snow covers which alter the surface albedo. In tests of the sensitivity of the mass balance to seasonal values of climatic parameters, the mass balance is found to be strongly sensitive to summer air temperature and precipitation but only weakly sensitive to relative humidity.


2017 ◽  
Vol 53 (4) ◽  
pp. 3146-3178 ◽  
Author(s):  
Baohong Ding ◽  
Kun Yang ◽  
Wei Yang ◽  
Xiaobo He ◽  
Yingying Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document