Optimization of WEDM Process Parameters

2014 ◽  
Vol 592-594 ◽  
pp. 831-835 ◽  
Author(s):  
Vikram Singh ◽  
Sharad Kumar Pradhan

The objective of the present work is to investigate the effects of various WEDM process parameters like pulse on time, pulse off time, corner servo, flushing pressure, wire feed rate, wire tension, spark gap voltage and servo feed on the material removal rate (MRR) & Surface Roughness (SR) and to obtain the optimal settings of machining parameters at which the material removal rate (MRR) is maximum and the Surface Roughness (SR) is minimum in a range. In the present investigation, Inconel 825 specimen is machined by using brass wire as electrode and the response surface methodology (RSM) is for modeling a second-order response surface to estimate the optimum machining condition to produce the best possible response within the experimental constraints.

Author(s):  
Gajanan Kamble ◽  
Dr. N. Lakshamanaswamy ◽  
Gangadhara H S ◽  
Sharon Markus ◽  
N. Rajath

Wire cut electrical discharge machining (WEDM) is a hybrid manufacturing technology which enables machining of all engineering materials. This research article deals with investigation on Optimization of the Process Parameters of the wire cut EDM of Bronze material of dimension (80*80*40) in mm. Material removal rate, Surface roughness and Kerf width were studied against the process parameters such as Pulse on time(TON), Pulse off time (TOFF) and Current(IP). The machining parameters for wire EDM were optimized for achieving the combined objectives. As there are three input parameters 27 experiments is carried out and full factorial is used. Optimized parameters were found using (ANOVA) and the error percentage can be validated and parameter contribution for the Material removal rate (MRR) and Surface roughness were found.


2018 ◽  
Vol 28 ◽  
pp. 55-66 ◽  
Author(s):  
Kuldeep Singh ◽  
Khushdeep Goyal ◽  
Deepak Kumar Goyal

In research work variation of cutting performance with pulse on time, pulse off time, wire type, and peak current were experimentally investigated in wire electric discharge machining (WEDM) process. Soft brass wire and zinc coated diffused wire with 0.25 mm diameter and Die tool steel H-13 with 155 mm× 70 mm×14 mm dimensions were used as tool and work materials in the experiments. Surface roughness and material removal rate (MRR) were considered as performance output in this study. Taguchi method was used for designing the experiments and optimal combination of WEDM parameters for proper machining of Die tool steel (H-13) to achieve better surface finish and material removal rate. In addition the most significant cutting parameter is determined by using analysis of variance (ANOVA). Keywords Machining, Process Parameters, Material removal rate, Surface roughness, Taguchi method


2014 ◽  
Vol 541-542 ◽  
pp. 354-358 ◽  
Author(s):  
C. Nandakumar ◽  
B. Mohan

This research deals with the multi-response optimization of CNC WEDM process parameters for machining titanium alloy Ti 6AI-4V using Response Surface Methodology (RSM) to achieve higher Material Removal Rate (MRR) and lower surface roughness (Ra). The process parameters of CNC WEDM namely pulse-on time (TON), pulse-off time (TOFF) and wire feed rate (WF) were optimized to study the responses in terms of material removal rate and surface roughness. The surface plot and the contour plots were generated between the process parameters and the responses using MINITAB software. The results show that the Response surface methodology (RSM) is a powerful tool for providing experimental diagrams and statistical-mathematical models to perform the experiments appropriately and economically.


Author(s):  
Wahaizad Safiei ◽  
Muhamad Ridzuan Radin Muhamad Amin

In this paper, the results of surface roughness (Ra) and material removal rate (MRR) are presented based on experimental studies of Electrical Discharge Machining (EDM) process parameters. Pulse ON time, pulse OFF time, peak current, gap voltage and jump speed are the selected input parameters and the experiments were conducted with Aluminium Alloy 5083 as a workpiece, copper as an electrode and the response variables are surface roughness (Ra) and material removal rate (MRR). Design of Experiment and Analysis of Variance (ANOVA) were applied to identify the optimum settings.The result shows that the significant factors for the value of surface roughness (Ra) and material removal rate (MRR) are pulses ON time and peak current.


Author(s):  
C Balasubramaniyan ◽  
K Rajkumar ◽  
S Santosh

NiTiCuZr shape memory alloys (SMA) outperform ternary and binary SMA alloys in terms of functional fatigue and higher temperature performance due to their high cyclic stability and transformation temperatures. Owing to the impairment of the shape memory effect during processing, it is difficult to select a manufacturing process for obtaining design functionality with the required dimensions and surface roughness. In this work, a high-temperature NiTiCuZr SMA was machined using an ultrasonic vibration assisted wire electric discharge machine (USV-WEDM). The machining was conducted using various parameters with a constant ultrasonic vibration of 20 kHz provided on a wire-electrode to evaluate surface roughness (Ra) and material removal rate (MRR). Scanning Electron Microscope (SEM) and Energy Dispersive X-Ray analysis (EDX) were utilized to examine the surface integrity and chemical composition of the machined surfaces. MRR increased by 62% with a steady increase in pulse-on time ( Ton) and applied current ( I), whereas increasing levels of parameters such as pulse-off time ( Toff) and servo voltage (SV) reduced surface roughness ( Ra) by 69%. The results reveal that tool vibration at ultrasonic frequency reduces the surface roughness and improves the material removal rate of the machined NiTiCuZr SMA as compared to that of non-ultrasonic assisted machining conditions. SEM-EDX investigation reveals that the formation of re-solidification and oxide layers during NiTiCuZr machining at high machining parameters results in increased hardness and surface roughness. USV-WEDM is a suitable process for machining SMA alloy without adversely impacting SMA properties.


2020 ◽  
Vol 38 (9A) ◽  
pp. 1352-1358
Author(s):  
Saad K. Shather ◽  
Abbas A. Ibrahim ◽  
Zainab H. Mohsein ◽  
Omar H. Hassoon

Discharge Machining is a non-traditional machining technique and usually applied for hard metals and complex shapes that difficult to machining in the traditional cutting process. This process depends on different parameters that can affect the material removal rate and surface roughness. The electrode material is one of the important parameters in Electro –Discharge Machining (EDM). In this paper, the experimental work carried out by using a composite material electrode and the workpiece material from a high-speed steel plate. The cutting conditions: current (10 Amps, 12 Amps, 14 Amps), pulse on time (100 µs, 150 µs, 200 µs), pulse off time 25 µs, casting technique has been carried out to prepare the composite electrodes copper-sliver. The experimental results showed that Copper-Sliver (weight ratio70:30) gives better results than commonly electrode copper, Material Removal Rate (MRR) Copper-Sliver composite electrode reach to 0.225 gm/min higher than the pure Copper electrode. The lower value of the tool wear rate achieved with the composite electrode is 0.0001 gm/min. The surface roughness of the workpiece improved with a composite electrode compared with the pure electrode.


2020 ◽  
Vol 17 (3) ◽  
pp. 389-397
Author(s):  
Harvinder Singh ◽  
Vinod Kumar ◽  
Jatinder Kapoor

Purpose This study aims to investigate the influence of process parameters of wire electrical discharge machining (WEDM) of Nimonic75. Nimonic75 is a Nickel-based alloy mostly used in the aerospace industry for its strength at high temperature. Design/methodology/approach One factor at a time (OFAT) approach has been used to perform the experiments. Pulse on time, pulse off time, peak current and servo voltage were chosen as input process parameters. Cutting speed, material removal rate and surface roughness (Ra) were selected as output performance characteristics. Findings Through experimental work, the effect of process parameters on the response characteristics has been found. Results identified the most important parameters to maximize the cutting speed and material removal rate and minimize Ra. Originality/value Very limited research work has been done on WEDM of Nickel-based alloy Nimonic75. Therefore, the aim of this paper to conduct preliminary experimentation for identifying the parameters, which influence the response characteristics such as material removal rate, cutting speed, Ra, etc. during WEDM of Nickel-based alloy (Nimonic75) using OFAT approach and found the machinability of Nimonic75 for further exhaustive experimentation work.


2015 ◽  
Vol 787 ◽  
pp. 406-410
Author(s):  
S. Santosh ◽  
S. Javed Syed Ibrahim ◽  
P. Saravanamuthukumar ◽  
K. Rajkumar ◽  
K.L. Hari Krishna

Magnesium alloys are used in many applications, particularly in orthopaedic implants are very difficult to machine by conventional processes because of their complex 3D structure and limited slip system at room temperature. Hence there is an inherent need for alternative processes for machining such intricate profiles. Electric Discharge Machining is growing rapidly in tool rooms, die shops and even in general shop floors of modern industries to facilitate complex machining for difficult-to-machine materials and provide better surface integrity. Therefore, the use of electric discharge machining on ZM21 magnesium alloy is attempted in this paper. Nanographite powder is added for machining zone to enhance the electrical conductivity of EDM oil by way it improves the machining performance. Machining parameters such as the current, pulse on time and pulse off time were process parameters to explore their effects on the material removal rate and tool wear rate. It is observed that, an increased material removal rate was due to the enhanced electrical and thermal conductivity of the EDM oil.


2011 ◽  
Vol 189-193 ◽  
pp. 1393-1400 ◽  
Author(s):  
M.M. Rahman

Electrical discharge machining (EDM) is relatively modern machining process having distinct advantages over other machining processes and able to machine Ti-alloys effectively. This paper attempts to investigate the effects of process parameters on output response of titanium alloy Ti-6Al-4V in EDM utilizing copper tungsten as an electrode and positive polarity of the electrode. Mathematical models for material removal rate (MRR), electrode wear rate (EWR) and surface roughness (SR) are developed in this paper. Design of experiments method and response surface methodology techniques are implemented. The validity test of the fit and adequacy of the proposed models has been carried out through analysis of variance. It can be seen that as the peak current increases the TWR decreases till certain ampere and then increases. The excellent surface finish is investigated in this study at short pulse on time and in contrast the long pulse duration causes the lowest EWR. Long pulse off time provides minimum EWR and the impact of pulse interval on EWR depends on peak current. The result leads to wear rate of electrode and economical industrial machining by optimizing the input parameters. It found that the peak current, servo voltage and pulse on time are significant in material removal rate and surface roughness. Peak current has the greater impact on surface roughness and material removal rate.


In the present research work, Stainless Steel AISI 316 as per ASTM A 276 has been employed as the base material to perform Spark and Wire-Cut EDM. The main agenda behind performing Spark and Wire-Cut EDM on Stainless Steel AISI 316 is to find out the effect of machining parameters like surface roughness (SR) and MRR (Material Removal Rate). In-case of wire-cut EDM, brass wire) of 0.25 mm diameter is used as a tool and distilled water is used as dielectric fluid and experimental process parameters like Current (A) (2, 3 and 4 Amps), Pulse ON time (B) (25, 30 and 35 μs) and Wire feed rate (C) (40, 60 and 80 mm/sec). Similarly for spark cut EDM copper rod of 12 mm diameter and 65 mm length. Process parameters like Current (A) (6, 12 and 16 Amps), Voltage (B) (30, 35 and 40 Volts) and Pulse ON time (C) (50, 100 and 200μs) were maintained during the experimentation. Statistical tools ANOVA & L-9 Orthogonal Array (OA) have been employed to optimize the machining parameters like Surface Roughness (SR) and MRR (Material Removal Rate).


Sign in / Sign up

Export Citation Format

Share Document