Effect of Increasing Wick Evaporation Area on Heat Transfer Performance for Loop Heat Pipes

2013 ◽  
Vol 711 ◽  
pp. 223-228 ◽  
Author(s):  
Shen Chun Wu ◽  
Jhih Huang Gao ◽  
Zih Yan Huang ◽  
Dawn Wang ◽  
Cho Jeng Huang ◽  
...  

This study investigates the effects of increasing the evaporating area of wick in a loop heat pipe (LHP). This work attempts to improve the performance of the loop heat pipe by increasing the number of grooves and thereby the surface area of the wick. The number of grooves is increased from eight to twelve. Experimental results show that increasing the number of grooves not only increases the surface area of the wick but also enhances LHP performance. When the evaporating surface area increases by 50%, which corresponds to increasing the number of grooves from eight to twelve, the heat transfer capacity increases from 310W to 470W and the thermal resistance is reduced from 0.21°C/W to 0.17°C/W. According to preliminary measurements, increasing the number of grooves in the loop heat pipe is highly promising for improving the heat transfer performance.

Author(s):  
Guangming Xu ◽  
Rongjian Xie ◽  
Nanxi Li ◽  
Cheng Liu

Abstract Two kinds of new refrigerant-R1234ze (E) and R245fa were discussed as substitutes or supplements to traditional working fluids of loop heat pipes based on their favorable thermophysical properties and characteristics such as being safe and environmentally friendly. Thermal characteristics of a loop heat pipe with sintering copper wick at different charging ratios were experimentally investigated under variable heat loads. The results showed that the optimal charging ratio in the loop heat pipe range from 65% to 70%, and at this charging level, the R1234ze(E) system had better start-up response, while the R245fa system presented a stronger heat transfer capacity. The characteristic temperature of R1234ze(E) system was below 35 °C, and the corresponding thermal resistance was 0.08 K/W ~ 1.62 K/W under heat loads ranging from 5 W to 40 W. The thermal resistance of the R245fa system was 0.18 K/W ~ 0.91 K/W under heat loads of 10 W ~ 60 W, and the operating temperature was below 60 °C. The loop heat pipes charged with the proposed new refrigerants exhibit superb performance in room temperature applications, making them beneficial for enhancing the performance of electronics, and could provide a distinctive choice for the cooling of small-sized electronics especially.


2016 ◽  
Vol 693 ◽  
pp. 395-402
Author(s):  
Xi Bing Li ◽  
Ming Jian Li ◽  
Ming Li ◽  
Ying Si Wan

As an efficient heat conducting unit, micro heat pipe is widely used in high heat flux microelectronic chips, and thermal resistance is one of the factors that are crucial to its heat transfer capacity. Based on heat transfer theory, this paper established a theoretical model of total thermal resistance through analyzing the structure and heat transfer performance of circular heat pipe with trapezium-grooved wick, simplified the model and tested the micro heat pipe for its total thermal resistance performance by setting up a testing platform. The testing results show that when the micro heat pipe is in the optimal heat transfer state, its total thermal resistance well coincides with that from the established theoretical model. As for a micro heat pipe with trapezium-grooved wick, its total thermal resistance first decreases, then increases with heat transfer capability increment, and reaches the minimum when it is in the optimal state of heat transfer performance. That too much working fluid accumulates in evaporation section and the vapor velocity is rather low is the main cause for the greater thermal resistance when the pipe is in low heat transfer quantity, yet the greater total thermal resistance when the pipe is in high heat transfer quantity is mainly caused by the working fluid drying up in condensation section. The total thermal resistance is related to many factors, such as the thermal conductivity of tube-shell material, wall thickness, wick thickness, the number of the grooves, the lengths of condensation and evaporation sections, the diameter of vapor cavity etc.. Therefore, the structure parameters of a micro heat pipe with trapezium-grooved wick should be rationally designed according to specific conditions to ensure its heat transfer capacity and total thermal resistance to meet the requirements and be in the optimal state.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 751-760
Author(s):  
Lei Lei

AbstractTraditional testing algorithm based on pattern matching is impossible to effectively analyze the heat transfer performance of heat pipes filled with different concentrations of nanofluids, so the testing algorithm for heat transfer performance of a nanofluidic heat pipe based on neural network is proposed. Nanofluids are obtained by weighing, preparing, stirring, standing and shaking using dichotomy. Based on this, the heat transfer performance analysis model of the nanofluidic heat pipe based on artificial neural network is constructed, which is applied to the analysis of heat transfer performance of nanofluidic heat pipes to achieve accurate analysis. The experimental results show that the proposed algorithm can effectively analyze the heat transfer performance of heat pipes under different concentrations of nanofluids, and the heat transfer performance of heat pipes is best when the volume fraction of nanofluids is 0.15%.


2014 ◽  
Vol 595 ◽  
pp. 24-29 ◽  
Author(s):  
Shen Chun Wu ◽  
Kuei Chi Lo ◽  
Jia Ruei Chen ◽  
Chen Yu Chung ◽  
Weie Jhih Lin ◽  
...  

This paper specifically addresses the effect of the sintering temperature curve in manufacturing nickel powder capillary structure (wick) for a loop heat pipe (LHP) with flat evaporator. The sintering temperature curve is composed of three regions: a region of increasing temperature, a region of constant temperature, and a region of decreasing temperature. The most important region is the increasing temperature region, as the rate of temperature increase directly affects the performance of the wick.When the slope of the region of increasing temperature is 0.8 (equivalent to 8 OC/min), the structure of the manufactured wick is complete, with the best heat transfer performance result. Experimental resultsshowed that the optimal heat transfer performance is 160W, the minimal total thermal resistance is approximately 0.43OC/W, and the heat flux is 17W/cm2; the optimal wick manufactured has an effective pore radius of 5.2 μm, a permeability of 5.9×10-13m2, and a porosity of 64%.


2021 ◽  
Vol 248 ◽  
pp. 01004
Author(s):  
Chongju Hu ◽  
Xiuxiang Zhang ◽  
Hongyan Wang ◽  
Bo Wu ◽  
Pinghua Zhang

Heat pipe may be affected by the high temperature heat source during operation, resulting in unsteady oscillation heating. In this paper, the influence of alternating power and period on the start-up and heat transfer performance of mercury heat pipe is studied by using the method of equivalent thermal resistance of heat pipe. The results are as follows:1) The start-up time of alternating power heating and steady-state power heating is basically equal; 2) For the alternating power heating, the steady-state temperature of heat pipe changes periodically, increasing the alternating period or the amplitude of alternating power will lead to the increase of the fluctuation amplitude of heat pipe temperature, and the influence of alternating period is greater than that of changing the amplitude of alternating power. 3) Under the condition of alternating power heating, the steady-state thermal resistance of heat pipe changes periodically. The fluctuation amplitude of steady-state thermal resistance of heat pipe increases with the increase of alternating period and alternating power amplitude, and the influence of alternating power amplitude is greater than that of alternating period.


Author(s):  
Peng Cheng ◽  
Scott Thompson ◽  
Joe Boswell ◽  
Hongbin Ma

The heat transfer performance of flat-plate oscillating heat pipes (FP-OHPs) was investigated experimentally and theoretically. Two layers of channels were created by machining grooves on both sides of copper plate, in order to increase the channel number per unit volume. The channels had rectangular cross-sections with hydraulic diameters ranging from 0.762 mm to 1.389 mm. Acetone, water and diamond/acetone, gold/water and diamond/water nanofluids were tested as working fluids. It was found that the FP-OHP’s thermal resistance depended on the power input and operating temperature. The FP-OHP charged with pure water achieved a thermal resistance of 0.078°C/W while removing 560 W with a heat flux of 86.8 W/cm2. The thermal resistance was further decreased when nanofluid was used as the working fluid. A mathematical model predicting the heat transfer performance was developed to predict the effects of channel dimension, heating mode, working fluid and operating temperature on the thermal performance of the FP-OHP. Results presented here will assist in optimization of the FP-OHP and provide a better understanding of heat transfer mechanisms occurring in an OHPs.


Sign in / Sign up

Export Citation Format

Share Document