Control System Design and Trajectory Planning for SCARA Robots

2014 ◽  
Vol 602-605 ◽  
pp. 1001-1005 ◽  
Author(s):  
Ning Ning Gao ◽  
Dong Qing Wang ◽  
Ming Wei Ding ◽  
Peng Xiu Yao ◽  
Lu Yi Fan

Based on STM32F407ZET6 microprocessor with ARM Cortex-M4 core, we designed a controller for servo motors and servo drivers of a 4-axis Selective Compliance Assembly Robot Arm (SCARA) robot. The forward and inverse kinematic equations are established, circular interpolation equations in three-dimensional space are derived by using the digital differential analyzer method. The adopted circular interpolation algorithm avoids to judge quadrant and feeding direction, which simplifies the program.

2012 ◽  
Vol 186 ◽  
pp. 234-238
Author(s):  
Erol Uyar ◽  
Lutfi Mutlu

In this paper kinematic analysis of a 3-PUU translational parallel manipulator (TPM) is made by creating the forward and inverse Kinematic solutions. For a given position, control of the end effecter is then realized by using the calculated inverse kinematic parameters as reference values. For kinematic analysis relevant equations are derived from geometrical vector relations. For the forward and inverse kinematic solutions of the non-linear model a MATLAB based iterative algorithm is developed and the inverse kinematic solutions of limbs, are then used to control the end effecter position through screw rails which are driven by DC motors. After the general mechanical design of the manipulator all parts are drawn and modelled in SolidWorks, and a simulation of the motion in three dimensional space is made. To support the reliability of calculated parameters through inverse kinematic solutions, results are compared with the values of SolidWorks based simulation model of the manipulator. Furthermore a real position control with use of feed back encoders is applied and the evaluated results are compared with the results of a simulation model. Very similar and satisfactory results are obtained with both simulation and real application.


1997 ◽  
Vol 84 (1) ◽  
pp. 176-178
Author(s):  
Frank O'Brien

The author's population density index ( PDI) model is extended to three-dimensional distributions. A derived formula is presented that allows for the calculation of the lower and upper bounds of density in three-dimensional space for any finite lattice.


2019 ◽  
Author(s):  
Jumpei Morimoto ◽  
Yasuhiro Fukuda ◽  
Takumu Watanabe ◽  
Daisuke Kuroda ◽  
Kouhei Tsumoto ◽  
...  

<div> <div> <div> <p>“Peptoids” was proposed, over decades ago, as a term describing analogs of peptides that exhibit better physicochemical and pharmacokinetic properties than peptides. Oligo-(N-substituted glycines) (oligo-NSG) was previously proposed as a peptoid due to its high proteolytic resistance and membrane permeability. However, oligo-NSG is conformationally flexible and is difficult to achieve a defined shape in water. This conformational flexibility is severely limiting biological application of oligo-NSG. Here, we propose oligo-(N-substituted alanines) (oligo-NSA) as a new peptoid that forms a defined shape in water. A synthetic method established in this study enabled the first isolation and conformational study of optically pure oligo-NSA. Computational simulations, crystallographic studies and spectroscopic analysis demonstrated the well-defined extended shape of oligo-NSA realized by backbone steric effects. The new class of peptoid achieves the constrained conformation without any assistance of N-substituents and serves as an ideal scaffold for displaying functional groups in well-defined three-dimensional space, which leads to effective biomolecular recognition. </p> </div> </div> </div>


Author(s):  
Raimo Hartmann ◽  
Hannah Jeckel ◽  
Eric Jelli ◽  
Praveen K. Singh ◽  
Sanika Vaidya ◽  
...  

AbstractBiofilms are microbial communities that represent a highly abundant form of microbial life on Earth. Inside biofilms, phenotypic and genotypic variations occur in three-dimensional space and time; microscopy and quantitative image analysis are therefore crucial for elucidating their functions. Here, we present BiofilmQ—a comprehensive image cytometry software tool for the automated and high-throughput quantification, analysis and visualization of numerous biofilm-internal and whole-biofilm properties in three-dimensional space and time.


i-com ◽  
2020 ◽  
Vol 19 (2) ◽  
pp. 67-85
Author(s):  
Matthias Weise ◽  
Raphael Zender ◽  
Ulrike Lucke

AbstractThe selection and manipulation of objects in Virtual Reality face application developers with a substantial challenge as they need to ensure a seamless interaction in three-dimensional space. Assessing the advantages and disadvantages of selection and manipulation techniques in specific scenarios and regarding usability and user experience is a mandatory task to find suitable forms of interaction. In this article, we take a look at the most common issues arising in the interaction with objects in VR. We present a taxonomy allowing the classification of techniques regarding multiple dimensions. The issues are then associated with these dimensions. Furthermore, we analyze the results of a study comparing multiple selection techniques and present a tool allowing developers of VR applications to search for appropriate selection and manipulation techniques and to get scenario dependent suggestions based on the data of the executed study.


Sign in / Sign up

Export Citation Format

Share Document