Three-Motor Synchronization Control Strategy Based on the New Speed Sensorless Active Disturbance Rejection Control

2014 ◽  
Vol 602-605 ◽  
pp. 1078-1082
Author(s):  
Hui Li ◽  
Xing Qiao Liu ◽  
Jing Li

A new control method based on speed sensorless active disturbance rejection control (SS-ADRC) is proposed for overcoming the shortage of traditional PID control method in the application of the multi-motor synchronization system. By using the extended state observer (ESO), the internal and external disturbances in the system are compensated. According to the data driving principle, the formula of speed identification is inferred. Disturbances can be estimated online through ESO, and then speed value can also be identified by ESO. The simulation results show: the control system have strong decoupling ability, accurate speed identification ability, and good dynamic performance.

Author(s):  
Mohammed Ali ◽  
Charles K. Alexander

The tracking performance of a robot manipulator is controlled using nonlinear active disturbance rejection control (ADRC). The proposed method does not require the complete knowledge of the plant’s parameters, and external disturbances since it is based on the rejection and estimation of the unknown internal dynamics and external disturbances. The proposed method is simple and has minimal tuning parameters. The robustness of the proposed method is discussed against parameter uncertainties and disturbances. First, the mathematical model of the manipulator is developed. ADRC theory is explained. The manipulator is represented in ADRC form. ADRC’s tracking performance for the joints and end-effector is compared to the tracking performance of the robust passivity (RP) control. The simulations prove that the proposed control method achieves good tracking performance compared to RP control. It is shown that ADRC has a lower energy consumption compared to RP control by calculating the power in the input signals.


Author(s):  
Yuan Cheng

A method of intelligent steering control of unmanned vehicle wheel using Active Disturbance Rejection Control (ADRC) is proposed. The steering system of unmanned vehicles is composed of active disturbance rejection controller, angle sensor, motor driver and steering bridge mechanism. When ADRC of front wheels is realized by active disturbance rejection controller, the dynamic equation of the vehicle needs to be normalized first to ensure the dynamic equation of vehicle degree of freedom that can accurately reflect the lateral dynamic characteristics of the vehicle and then the accurately control the tracking of the ideal yaw rate of the vehicle by second-order ADRC. The unmanned vehicle controlled by the proposed method did not overshoot. At the initial stage of yaw disturbance, the response speed of the front wheel’s angle controlled by the proposed method is faster than that of the PID control and the present time is about 0.02s. The vehicle path deviation controlled by the proposed control method is only 60% of the vehicle path deviation controlled by the PID control method. The proposed method makes the vehicle to have stronger anti-yaw disturbance ability and further enhances the vehicle’s path-keeping ability.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Chuang Cheng ◽  
Hui Zhang ◽  
Hui Peng ◽  
Zhiqian Zhou ◽  
Bailiang Chen ◽  
...  

Purpose When the mobile manipulator is traveling on an unconstructed terrain, the external disturbance is generated. The load on the end of the mobile manipulator will be affected strictly by the disturbance. The purpose of this paper is to reject the disturbance and keep the end effector in a stable pose all the time, a control method is proposed for the onboard manipulator. Design/methodology/approach In this paper, the kinematics and dynamics models of the end pose stability control system for the tracked robot are built. Through the guidance of this model information, the control framework based on active disturbance rejection control (ADRC) is designed, which keeps the attitude of the end of the manipulator stable in the pitch, roll and yaw direction. Meanwhile, the control algorithm is operated with cloud computing because the research object, the rescue robot, aims to be lightweight and execute work with remote manipulation. Findings The challenging simulation experiments demonstrate that the methodology can achieve valid stability control performance in the challenging terrain road in terms of robustness and real-time. Originality/value This research facilitates the stable posture control of the end-effector of the mobile manipulator and maintains it in a suitable stable operating environment. The entire system can normally work even in dynamic disturbance scenarios and uncertain nonlinear modeling. Furthermore, an example is given to guide the parameter tuning of ADRC by using model information and estimate the unknown internal modeling uncertainty, which is difficult to be modeled or identified.


Author(s):  
Zhengrong Chu ◽  
Christine Wu ◽  
Nariman Sepehri

In this article, a new automated steering control method is presented for vehicle lane keeping. This method is a combination between the linear active disturbance rejection control and the quantitative feedback theory. The structure of the steering controller is first determined based on the linear active disturbance rejection control, then the controller is tuned in the framework of the quantitative feedback theory to meet the prescribed design specifications on sensitivity and closed-loop stability. The parameter uncertainties of the vehicle system are considered at the tuning stage. The proposed steering controller is simulated and tested on a scale vehicle. Both the simulation and experimental results demonstrate that the scale vehicle controlled by the proposed controller is able to perform the lane keeping. In the experiments, the lateral offset between the scale vehicle and the road centerline is regulated within the acceptable ranges of ±0.03 m during straight lane keeping and ±0.15 m during curved lane keeping. The proposed controller is easy to be implemented and is simple without requiring complex calculations and measurements of vehicle states. Simulations also show that the control method can be implemented on a full-scale vehicle.


Author(s):  
Zhang He ◽  
Zhao Jiyun ◽  
Wang Yunfei ◽  
Zhang Zhonghai ◽  
Ding Haigang ◽  
...  

This study proposes a compound control method based on sliding mode and active disturbance rejection control to address the difficulty of controlling the cutting head for boom-type roadheader with parameter changes and uncertain disturbances. The fastest discrete tracking differentiator and extended state observer based on the traditional active disturbance rejection control are designed. Additionally, the controller of the sliding mode and active disturbance rejection control is constructed. Theoretical analysis indicates that the proposed controller ensures asymptotic stability, despite the existing uncertain disturbances. Moreover, a system based on AMESim and MATLAB/Simulink Co-simulation model is developed to further verify the performance of proposed algorithm. Compared with traditional active disturbance rejection control, proportional-integral-derivative(PID) and sliding mode control, co-simulation results demonstrate that the sliding mode active disturbance rejection compound control improves the tracking accuracy and robustness of the position servo system.


2019 ◽  
Vol 103 (1) ◽  
pp. 003685041988356
Author(s):  
Nan Sang ◽  
Lele Chen

A linear vehicle model is commonly employed in the controller design for an active front steering (AFS). However, this simplified model has a considerable influence on the accuracy of the controller. In this article, an AFS controller using an active disturbance rejection control (ADRC) technique is proposed to prevent this problem. The AFS controller was established in MATLAB/Simulink to control the CarSim vehicle model for verification of the simulation. Under the straight-line driving disturbance condition, proportion-integration-differentiation (PID) control and ARDC substantially decreased with respect to the uncontrolled lateral offset and ADRC performed better than PID control. Under the double lane change (DLC) test working condition, the tracking error of the path, yaw rate, roll angle, and lateral acceleration, and error of the driving direction were used to evaluate the vehicle’s controllability and stability. These evaluation indexes were substantially improved by PID control and ADRC; similarly, ADRC was better than PID control. The tracking error of the ADRC in the presence of parameter variance and external disturbance was significantly smaller than that of PID control. The results have verified that the AFS controller based on ADRC can significantly improve vehicle controllability and stability.


Author(s):  
Naser Esmaeili ◽  
Reza Kazemi

Today, with the increasing growth in road traffic, many countries are welcoming long articulated vehicles because of their economic and environmental benefits and the positive effects on the problem of traffic congestion and the reduction in fuel consumption and environmental pollutants. The major problem with such vehicles is poor maneuverability at low speeds and inappropriate lateral performance at high speeds, resulting in accidents and financial losses. Therefore, in order to improve their safety, they need a control system that can improve the performance of the long articulated vehicles. In this article, a 19-degree of freedom dynamic model of the long articulated vehicle has been developed in MATLAB software. This vehicle consists of a tractor and two semi-trailer units. To adjust the articulated vehicle lateral dynamics, a robust control method based on the combination of active disturbance rejection control and back-stepping sliding mode control is introduced. Four control variables such as yaw rate and lateral velocity of the tractor and also first and second articulation angles are regulated by steering the axles of the tractor and two trailers. Furthermore, in order to measure the state variables of the long articulated vehicle, the extended Kalman filter is used. The results of the simulation in high-speed lane change and low-speed steep steer maneuvers indicate the superiority of this method over linear-quadratic regulator and sliding mode controllers. Finally, the robustness of this controller than conventional sliding mode and active disturbance rejection sliding mode controllers have been shown in the presence of noises.


Sign in / Sign up

Export Citation Format

Share Document