scholarly journals Design of an active front steering system for a vehicle using an active disturbance rejection control method

2019 ◽  
Vol 103 (1) ◽  
pp. 003685041988356
Author(s):  
Nan Sang ◽  
Lele Chen

A linear vehicle model is commonly employed in the controller design for an active front steering (AFS). However, this simplified model has a considerable influence on the accuracy of the controller. In this article, an AFS controller using an active disturbance rejection control (ADRC) technique is proposed to prevent this problem. The AFS controller was established in MATLAB/Simulink to control the CarSim vehicle model for verification of the simulation. Under the straight-line driving disturbance condition, proportion-integration-differentiation (PID) control and ARDC substantially decreased with respect to the uncontrolled lateral offset and ADRC performed better than PID control. Under the double lane change (DLC) test working condition, the tracking error of the path, yaw rate, roll angle, and lateral acceleration, and error of the driving direction were used to evaluate the vehicle’s controllability and stability. These evaluation indexes were substantially improved by PID control and ADRC; similarly, ADRC was better than PID control. The tracking error of the ADRC in the presence of parameter variance and external disturbance was significantly smaller than that of PID control. The results have verified that the AFS controller based on ADRC can significantly improve vehicle controllability and stability.

2019 ◽  
Vol 2019 ◽  
pp. 1-20 ◽  
Author(s):  
Chenyang Xu ◽  
Humin Lei ◽  
Na Lu

Aiming at the longitudinal motion model of the air-breathing hypersonic vehicles (AHVs) with parameter uncertainties, a new prescribed performance-based active disturbance rejection control (PP-ADRC) method was proposed. First, the AHV model was divided into a velocity subsystem and altitude system. To guarantee the reliability of the control law, the design process was based on the nonaffine form of the AHV model. Unlike the traditional prescribed performance control (PPC), which requires accurate initial tracking errors, by designing a new performance function that does not depend on the initial tracking error and can ensure the small overshoot convergence of the tracking error, the error convergence process can meet the desired dynamic and steady-state performance. Moreover, the designed controller combined with an active disturbance rejection control (ADRC) and extended state observer (ESO) further enhanced the disturbance rejection capability and robustness of the method. To avoid the differential expansion problem and effectively filter out the effects of input noise in the differential signals, a new tracking differentiator was proposed. Finally, the effectiveness of the proposed method was verified by comparative simulations.


2013 ◽  
Vol 404 ◽  
pp. 603-608
Author(s):  
Qing Bo Wu ◽  
Fu Yang Chen ◽  
Chang Yun Wen

In this paper, a self-repairing control scheme for attitude control of a quadrotor helicopter via active disturbance rejection control is proposed. Firstly, a model of the quadrotor helicopter is gained by its dynamic equations with pitch, roll and yaw axis. Then the active disturbance rejection controller is introduced, which is used to design the control system. The control system consists of PID controller in inner-loop and ADRC controller in outer-loop. Disturbances and uncertainties can be compensated by the ADRC to achieve smaller tracking error. Finally, the simulation results of the four-rotor helicopter validate the efficiency and self-repairing capability of the proposed control algorithm, compared with that of the PID control and the separate ADRC control.


2020 ◽  
Vol 10 (12) ◽  
pp. 4069
Author(s):  
Wameedh Riyadh Abdul-Adheem ◽  
Ahmad Taher Azar ◽  
Ibraheem Kasim Ibraheem ◽  
Amjad J. Humaidi

In this paper, a Novel Active Disturbance Rejection Control (N-ADRC) strategy is proposed that replaces the Linear Extended State Observer (LESO) used in Conventional ADRC (C-ADRC) with a nested LESO. In the nested LESO, the inner-loop LESO actively estimates and eliminates the generalized disturbance. Increasing the bandwidth improves the estimation accuracy which may tolerate noise and conflict with H/W limitations and the sampling frequency of the system. Therefore, an alternative scenario is offered without increasing the bandwidth of the inner-loop LESO provided that the rate of change of the generalized disturbance estimation error is upper bounded. This was achieved by the placing of an outer-loop LESO in parallel with the inner one that estimates and eliminates the remaining generalized disturbance originating from the inner-loop LESO due to bandwidth limitations. The stability of LESO and nested LESO was investigated using Lyapunov stability analysis. Simulations on uncertain nonlinear single-input-single-output (SISO) system with time-varying exogenous disturbance revealed that the proposed nested LESO could successfully deal with a generalized disturbance in both noisy and noise-free environments, where the Integral Time Absolute Error (ITAE) of the tracking error for the nested LESO was reduced by 69.87% from that of the LESO.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3790 ◽  
Author(s):  
Xuesong Zhou ◽  
Jiayao Wang ◽  
Youjie Ma

Photovoltaic grid-connected power generation systems are easily affected by external factors, and their anti-interference performance is poor. For example, changes in illumination and fluctuations in the power grid affect the operation ability of the system. Linear active disturbance rejection control (LADRC) can extract the “summation disturbance” information from the system and eliminate the disturbance at the fastest speed by controlling the signal before it affects the final output of the system. In this paper, an improved linear ADRC based on the principle of deviation control is proposed, and the voltage outer loop is controlled by an improved LADRC. This improved LADRC takes the deviation between each state variable and its observed value as the regulation basis for each state variable of the linear extended state observer (LESO). Based on the analysis of the bode diagram in the frequency domain, it can be concluded that, compared with the unimproved LADRC, the new LADRC has better disturbance rejection performance. The simulation results show that the control performance of the new, improved LADRC is better than that of the unimproved LADRC under different operating conditions, and it has better stability performance and anti-disturbance performance.


Author(s):  
Yan Wu ◽  
Lifang Wang ◽  
Junzhi Zhang ◽  
Fang Li

Due to the complicated driving conditions, the influence of the external disturbance and the system uncertainty, the traditional active front-steering control methods which are based on the exact mathematical model cannot meet the control requirements. This article presents a new active front-steering control strategy which is based on active disturbance rejection control for vehicle yaw stability control. The proposed controller can dynamically estimate and compensate the total disturbance, which enables it to provide good control performance in a range of conditions without the need for a sophisticated vehicle model. In this article, the implementation of the active disturbance rejection control–based yaw stability controller is introduced in detail, and the convergence of the extended state observer and the stability of the whole controller are theoretically proved. In order to verify the effectiveness of the proposed control strategy, a co-simulation environment is used to carry out real-time simulations on typical driving conditions to verify the performances of the proposed controller. The simulation results show that the proposed controller can effectively improve the yaw stability of the vehicle and has strong robustness.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Chao Ming ◽  
Xiaoming Wang

This paper investigates the design problem of the attitude controller for air-breathing supersonic vehicle subject to uncertainties and disturbances. Firstly, the longitudinal model is established for the attitude controller design which is devised as a strict feedback formulation, and a transformed tracking error is derived with the prescribed performance control technique such that it can limit the tracking error to a predefined region. Then, a novel linear active disturbance rejection control scheme is proposed for the attitude system to enhance the steady-state and transient-state performances by incorporating the transformed tracking error. On the basis of the Lyapunov stability theorem, the convergence and stability characteristics are both rigorously proved for the closed-loop system. Finally, extensive contrast simulations are conducted to demonstrate the effectiveness, robustness, and advantage of the proposed control strategy.


2021 ◽  
Vol 8 ◽  
Author(s):  
Bin Wang ◽  
Wanjun Wang ◽  
Zhaochun Li

In the magnetorheological (MR) impact buffer system, the internal or external disturbance of the MR damper is one of the main factors that affect the buffer performance of the system. This study aims to suppress or eliminate the influence of the disturbance of the MR damper. The continuous terminal sliding mode control (CTSMC) strategy with a high gain has a strong antidisturbance ability. However, the high gain may cause fluctuation of the damping force of the system. Therefore, a composite control strategy of sliding mode active disturbance rejection control (ADRC) based on an extended state observer (ESO) is proposed in this study. The total disturbance of the system is estimated by the ESO in real time, and the estimated disturbance is used as a feedforward compensation to the controller to reduce the influence of disturbance on the system. The gain of the CTSMC law of the closed-loop system can be reduced. In addition, the Lyapunov stability criterion is used to ensure the stability of the proposed controller. In order to verify the performance of the proposed CTSMC controller on response speed, overshoot, and hysteresis suppression ability, the window function, square wave function, and multistep function are given as the inputs of the control system. To verify the performance of the proposed sliding mode ADRC for the MR impact buffer system, the mechanical model and the control model are established and simulated using MATLAB/Simulink. The simulation results show that the CTSMC controller has the fastest response time and no overshoot and can suppress the hysteresis nonlinearity of the MR device compared with the open-loop control, PID control, and fractional order PID control. The MR impact buffer system with the sliding mode ADRC obtained the minimum peak value of 4350N within the permitted buffer displacement range compared with the other three traditional control methods. That means the proposed control method in this study has the advantage on buffer performance for the MR impact buffer system.


2021 ◽  
Author(s):  
Bolin Li ◽  
Pengchong Chen ◽  
Ying Luo

Abstract This paper proposes a fractional-order active disturbance rejection controller (FOADRC) parameters tuning design method for a permanent magnet synchronous motor (PMSM) servo system with frequency-domain analysis of active disturbance rejection control. In this method, a fractional-order proportional derivative (FOPD) and a fractional-order [proportional derivative] (FO[PD]) controllers design combining with active disturbance rejection control (ADRC) are proposed. A systematic parameter tuning scheme is presented, and a flat phase constraint is applied as a design specification, which guarantees the phase is flat around the gain crossover frequency point, and the closed-loop system is robust to gain variations. The simulation results illustrate that the response of the PMSM servo system using FO[PD]-ADRC has a smaller overshoot, less tracking error, and better resistance to load disturbance than that using FOPD-ADRC.


Abstract This paper deals with the disturbance rejection, parameter uncertainty cancelation, and the closed-loop stabilization of the water level of the four-tank nonlinear system. For the four-tank system with relative degree one, a new structure of the active disturbance rejection control (ADRC) has been presented by incorporating a tracking differentiator (TD) in the control unit to obtain the derivate of the tracking error. Thus, the nonlinear-PD control together with the TD serves as a new nonlinear state error feedback. Moreover, a sliding mode extended state observer is presented in the feedback loop to estimate the system's state and the total disturbance. The proposed scheme has been compared with several control schemes including linear and nonlinear versions of ADRC techniques. Finally, the simulation results show that the proposed scheme achieves excellent results in terms of disturbance elimination and output tracking as compared to other conventional schemes. It was able to control the water levels in the two lower tanks to their desired value and exhibits excellent performance in terms of Integral Time Absolute Error (ITAE) and Objective Performance Index (OPI).


Sign in / Sign up

Export Citation Format

Share Document