Simulation of Drag Reduction Mechanism of the Wing Tip

2014 ◽  
Vol 602-605 ◽  
pp. 295-298 ◽  
Author(s):  
Xiao Lei Liu ◽  
Xue Wei Liu ◽  
Li Min Song ◽  
Dun Jin ◽  
Yuan Kai Li

In this paper, the international common CFD software were installed on the flat three-dimensional optimal design wing tip and winglet wing for three-dimensional simulation, and use the results post-processing software post-processing.

Micromachines ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 59
Author(s):  
Mingrui Ao ◽  
Miaocao Wang ◽  
Fulong Zhu

With the k-ε renormalization group turbulence model, the drag reduction mechanism of three- dimensional spherical crown microstructure of different protruding heights distributing on the groove surface was studied in this paper. These spherical crown microstructures were divided into two categories according to the positive and negative of protruding height. The positive spherical crown micro-structures can destroy a large number of vortexes on the groove surface, which increases relative friction between water flow and the groove surface. With decreasing the vertical height of the spherical crown microstructure, the number of rupture vortexes gradually decreases. Due to the still water area causes by the blocking effect of the spherical crown microstructure, it was found that the shear stress on the groove surface can be reduced, which can form the entire drag reduction state. In another case, the spherical crown microstructures protrude in the negative direction, vortexes can be generated inside the spherical crown, it was found that these vortexes can effectively reduce the resistance in terms of pressure and friction. In a small volume, it was shown that the surface drag reduction rate of spherical crown microstructures protrudes in negative directions can be the same as high as 24.8%.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zhiyu Liu ◽  
Fan Fan ◽  
Donghang Zhang ◽  
Yang Li ◽  
Yuan Li ◽  
...  

Slick-water can effectively reduce the flow drag of fracturing fluid. Many studies have focused on the drag reduction performance of slick-water in wellbore and perforation, but there has been little research on drag reduction characteristics in fracture flow. In this paper, a new visualization experiment system is used to simulate real fracture. The fracture surface is produced through actual triaxial hydraulic fracturing and is copied by a three-dimensional printer using resin material to maintain its shape feature. In comparing the experimental results, it was found that the main factors affecting drag reduction in a fracture are the relative molecular weight and the added concentration. Unlike the flow rule of the drag reducer in a pipeline, when the concentration is greater than 0.10%, a negative DR effect begins to appear. The influence of molecular weight is related to the flow stage; the increasing of molecular weight causes a reduction in DR effect when the flow rate is 0.24 m/s. However, the flow rate exceeds 0.5 m/s; drag reducers with higher molecular weight demonstrate better drag reduction performance. The drag reduction mechanism analysis in fractures was obtained from visualization observations, and the flow characteristics of fluid were characterized by using tracking particles. Drag reduction effect occurs mainly on the surface of the fractures in contrast to near the centre of the flow channel. This research can provide a reference for the experimental study on drag reduction in fractures and is of great significance to the optimization and improvement of drag reducing agent.


2008 ◽  
Vol 128 (2) ◽  
pp. 459-466 ◽  
Author(s):  
Yoshitaka Inui ◽  
Tadashi Tanaka ◽  
Tomoyoshi Kanno

2009 ◽  
Vol 19 (1) ◽  
pp. 75-90 ◽  
Author(s):  
Hong-Bing Xiong ◽  
Jian-Zhong Lin ◽  
Ze-Fei Zhu

Sign in / Sign up

Export Citation Format

Share Document