Design and Analysis of Timing Screw Based on B-Spline Curve

2014 ◽  
Vol 602-605 ◽  
pp. 511-516
Author(s):  
Chang Qing Zhong ◽  
Yong Lin Zhang

In order to reduce the vibration of the high speed timing screw and optimize the manufacturing process of classic three-section high speed timing screw. Mathematical model of three-section high speed timing screw is rebuilt based on B-spline curve and a general mathematical model for the screw. Thus result a new one-section form instead of old three-section type. Then the displacement and speed is simulated in MATLAB. After that,modal analysis and harmonic response analysis have been done in ANSYS. Whose results show that new one-section high speed timing screw which can meet the request of three-section. New one-section high speed timing screw has no velocity mutation, which reduces the vibration of the high speed timing screw. According to the result of modal analysis and harmonic response analysis, the vibration is reduced about 20%.

2012 ◽  
Vol 487 ◽  
pp. 203-207
Author(s):  
Gong Xue Zhang ◽  
Xiao Kai Shen

Purpose, with the application of workbench finite element analysis software, get the analysis results of DVG 850 high-speed vertical machining center via the modal analysis and harmonic response analysis. Use the calculation results for reference, put forward the improved method, and prove the credibility of the simulation analysis by testing DVG 850 prototype.


2013 ◽  
Vol 300-301 ◽  
pp. 974-977
Author(s):  
Xi Hou ◽  
Hui Zhang ◽  
Sheng Ze Wang

A finite beam element model of the spindle which is one of key parts of the high-speed winder is presented in this paper. Critical speeds of the spindle based on the finite beam element model are obtained considering the effect of rotatory inertia, gyroscopic moments, and the damping. Harmonic response analysis of the high-speed winder spindle is developed in two conditions including static unbalance and couple unbalance. The dynamic analysis mentioned above is implemented by using the finite element software ANSYS. Calculation results in this paper are helpful for the dynamic balance of the high-speed winder spindle.


2011 ◽  
Vol 138-139 ◽  
pp. 246-251 ◽  
Author(s):  
Zhong Cai Zheng ◽  
Yan Gao ◽  
Na Liu ◽  
Kun Jin Zhang ◽  
Hai Ou Chen ◽  
...  

The modal analysis of the engine block is carried out using finite element method. Through the analysis, the inherent frequencies and mode shapes of the first 6 order modes are obtained respectively. Then the harmonic response analysis of the engine block is carried out based on the modal analysis, and the corresponding inherent frequencies of the weak positions of block under the action of external cycle force are obtained. Finally, the consistency of the typical mode shape and amplitude-frequency curve is compared.


2013 ◽  
Vol 437 ◽  
pp. 76-80
Author(s):  
Guo Ping An ◽  
Bing Bing Zhang ◽  
Yong Sheng Zhao ◽  
Li Gang Cai

This article investigates the effects of bearing configuration on the spindle dynamic characteristics. First, an analytical model of spindle is proposed and the bearing sets radial stiffness is calculated. Second, the spindle analytical model is developed to perform modal analysis and harmonic response analysis with ANSYS, and then obtain the natural frequency and FRF under different bearing configurations. The result suggests that bearing configuration has little effect on the natural frequency of spindle system and the FRF amplitude corresponding to the 1st natural frequency under back to back configuration or face to face configuration is relatively small. Finally, the proposed model is validated by modal experiment.


2012 ◽  
Vol 246-247 ◽  
pp. 189-193
Author(s):  
Zhao Ming Chen ◽  
Guo Tian He ◽  
Ji Ming He ◽  
Ze Yu Xu ◽  
Yuan Chang Lin ◽  
...  

The CAD software SolidWorks was used to create a three-dimensional finite element model of FTIR infrared spectrometer, and the model was imported into ANSYS/Workbench to modal analysis and harmonic response analysis. Through modal analysis, each order natural frequency and vibration shape were obtained. From modal shape analysis, all components of the stiffness strength and elastic deformation situation were got, and many times tests were carried to enhance stability of the structure and materials which had the most seriously deformation and direct effect impact to the quality of interferometer. The most sensitive frequency range of the system was concluded by harmonic response analysis, which provided a basis for further designing and improving of the spectrometer performance.


2014 ◽  
Vol 672-674 ◽  
pp. 1540-1544
Author(s):  
Ao Xiang Liu ◽  
Jun Wang ◽  
Jun Xian Kang ◽  
Qiang Zhang ◽  
Jun Sun ◽  
...  

TX1600 boring and milling machining center milling part was studied. The Three-dimensional solid model was established based on Solidworks. Simultaneously, modal analysis was carried out by ANSYS Workbench software, the first six natural frequencies and corresponding modes were acquired. Based on the modal analysis, the harmonic response analysis of milling part was conducted,and the response curves of the three main motion orientation were obtained respectively, the vibration performance of milling part under forces was further explored,and the finite element model was validated. The feasibility of the model to simplify the program was verified by modal and harmonic response analysis. The study provides a good basis in terms of selecting a specific material. The structures and material are optimized. Ultimately, a lot of energy is saved.


Sign in / Sign up

Export Citation Format

Share Document