Fatigue Damage Accumulation under the Complex Varying Loading

2014 ◽  
Vol 617 ◽  
pp. 187-192 ◽  
Author(s):  
Boris Melnikov ◽  
Artem Semenov

Fatigue analysis of steel parts of structures, which are subjected to complex irregular loading programs caused by wind, thermal, wave loads, earthquakes and combined imposed actions, requires in some cases using special methods of stress-strain evaluation. The model of the low cycle fatigue nonlinear damage accumulation is developed with taking into account the history of the deformation process. The damage is defined on the base of considering the quasi-static accumulation of maximal strain (stress) and hysteresis loops. The identification of material constants of the model is discussed. Application of the damage model for fatigue analysis of the antennas, pipelines, basements and fasteners units is considered and a comparison with experiments is given.

2000 ◽  
Author(s):  
Y. Wei ◽  
C. L. Chow ◽  
M. K. Neilsen ◽  
H. E. Fang

Abstract This paper presents a method of TMF analysis based on the theory of damage mechanics to examine the fatigue damage accumulation in 63Sn-37Pb solder. The method is developed by extending a viscoplastic damage model proposed earlier by the authors (Wei, et al 1999, 2000). A computer simulation is carried out to calculate hysteresis loops at three different strain ranges. The damage-coupled fatigue damage model is applied to predict the cyclic softening behavior of the material and the prediction is found to agree well with the experiment. With a proposed failure criterion based on the concept of damage accumulation, the TMF model is also found to predict successfully the fatigue life of 63Sn-37Pb solder.


SPE Journal ◽  
2021 ◽  
pp. 1-12
Author(s):  
Zhanke Liu ◽  
Steven Tipton ◽  
Dinesh Sukumar

Summary Coiled tubing (CT) integrity is critical for well intervention operations in the field. To monitor and manage tubing integrity, the industry has developed a number of computer models over the past decades. Among them, low-cycle fatigue (LCF) modeling plays a paramount role in safeguarding tubing integrity. LCF modeling of CT strings dates back to the 1980s. Recently, novel algorithms have contributed to developments in physics-based modeling of tubing fatigue and plasticity. When CT trips into and out of the well, it goes through bending/straightening cycles under high differential pressure. Such tough conditions lead to low- or ultralow-cycle fatigue, limiting CT useful life. The model proposed in this study is derived from a previous one and is based on rigorously derived material parameters to compute the evolution of state variables from a wide range of loading conditions. Through newly formulated plasticity and strain parameters, a physics-based damage model predicts CT fatigue life, along with diametral growth and wall thinning. The revised modeling approach gives results for CT damage accumulation, diametral growth, and wall thinning under realistic field conditions, with experimental validation. For 20 different CT alloys, it was observed that the model improved in accuracy overall by approximately 18.8% and consistency by 14.0%, for constant pressure data sets of more than 4,500 data points. The modeling results provide insights into the nonlinear nature of fatigue damage accumulation. This study allowed developing recommendations to guide future analytical modeling and experimental investigations, summarize theoretical findings in physics-based LCF modeling, and provide practical guidelines for CT string management in the field. The study provides a fundamental understanding of CT LCF and introduces novel algorithms in plasticity and damage.


Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1030 ◽  
Author(s):  
Jarosław Szusta ◽  
Andrzej Seweryn

This article presents an approach related to the modeling of the fatigue life of constructional metal alloys working under elevated temperature conditions and in the high-amplitude load range. The article reviews the fatigue damage accumulation criteria that makes it possible to determine the number of loading cycles until damage occurs. Results of experimental tests conducted on various technical metal alloys made it possible to develop a fatigue damage accumulation model for the LCF (Low Cycle Fatigue) range. In modeling, the material’s damage state variable was defined, and the damage accumulation law was formulated incrementally so as to enable the analysis of the influence of loading history on the material’s fatigue life. In the proposed model, the increment of the damage state variable was made dependent on the increment of plastic strain, on the tensile stress value in the sample, and also on the actual value of the damage state variable. The model was verified on the basis of data obtained from experiments in the field of uniaxial and multiaxial loads. Samples made of EN AW 2024T3 aluminum alloy were used for this purpose.


2018 ◽  
Author(s):  
DC Pham

A new 3D damage model is developed to predict the progressive failure and accumulated fatigue damage of woven fabric composite materials. Stress-based failure criteria are used to predict the damage initiation in x-tow, y-tow, and matrix constituent. An S-N based damage accumulation model is implemented to characterize the cycle dependent strength of the x- and y- fiber tows and matrix subjected to axial tension, compression, or in-plane share loading. A curve-fit non-linear shear model is also employed based on the static coupon test data of (+45/-45) woven fabric laminates. A static failure progression module is used to predict the damage and failure at the peak load prior to fatigue cycling. Stiffness degradation, fatigue damage accumulation, and failure mode detection are performed during the fatigue marching process. The developed user-defined material model for Abaqus features: 1) description of initial nonlinear shear before the damage initiation; 2) characterization of failure initiation based on a maximum stress criterion; and 3) performance of fatigue damage accumulation using a phenomenological model based on S-N test data. The predictive capabilities of the developed model are demonstrated using tension-tension fatigue of SYNCOGLAS R420 E-glass woven fabrics.


2021 ◽  
Author(s):  
Zhanke Liu ◽  
Steven M. Tipton ◽  
Dinesh Sukumar

Abstract Coiled tubing (CT) integrity is critical for well intervention operations in the field. To monitor and manage tubing integrity, the industry has developed a number of computer models over the past decades. Among them, low-cycle fatigue (LCF) modeling plays a paramount role in safeguarding tubing integrity. LCF modeling of CT strings dates back to the 1980s. Recently, novel algorithms have contributed to developments in physics-based modeling of tubing fatigue and plasticity. As CT trips into and out of the well, it goes through bending-straightening cycles under high differential pressure. Such tough conditions lead to low- or ultralow-cycle fatigue, limiting CT useful life. The model proposed in this study is derived from a previous one and based on rigorously derived material parameters to compute the evolution of state variables from a wide range of loading conditions. Through newly formulated plasticity and strain parameters, a physics-based damage model predicts CT fatigue life, along with diametral growth and wall thinning. The revised modeling approach gives results for CT damage accumulation, diametral growth, and wall thinning under realistic field conditions, with experimental validation. For 20 different coiled tubing alloys, it was observed that the model improved in accuracy overall by about 18.8% and consistency by 14.0%, for constant pressure data sets of more than 4,500 data points. The modeling results provide insights into the nonlinear nature of fatigue damage accumulation. This study allowed developing recommendations to guide future analytical modeling and experimental investigations, to summarize theoretical findings in physics-based LCF modeling, and to provide practical guidelines for CT string management in the field. The study provides a fundamental understanding of CT LCF and introduces novel algorithms in plasticity and damage.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xu Xu ◽  
Qiwen Xue ◽  
Zhaoyu Ku ◽  
Hanlun Li ◽  
Jinxiu Hu

PurposeFor the difference of the change law of material memory performance and the influence of damage state on memory performance, this paper aims to establish a general model of fatigue damage accumulation based on dynamic residual S–N curve and material memory characteristics.Design/methodology/approachThis paper introduces the material memory characteristics, combined with the residual S–N curve method, and uses the exponential decay function of the load cycle to construct the material memory performance function. While considering the damage state, the loading order can be fully considered. The parameter d in the function not only represents the variation of the material's memory property, but also considers the influence of the damage state.FindingsAccording to the test data of welding joints of common materials, alloy materials and other materials, the validity and feasibility of the fatigue cumulative damage model constructed were verified. The numerical results show that under the grading load, the fatigue cumulative damage model can be used to predict the fatigue life of welded structures and has high prediction accuracy and more approximate to the actual experiment results. It can be directly applied to the fatigue life prediction and design of actual engineering welded structures.Originality/valueThe model not only considers the effect of damage state and loading order on damage accumulation, but also contains only one material parameter, which is easy to obtain. The prediction accuracy and engineering practicability of fatigue were significantly improved.


Sign in / Sign up

Export Citation Format

Share Document