Study on Prediction Deflection of at the Girder Midspan of Large Tonnage Gantry Crane Rigid Legs

2014 ◽  
Vol 628 ◽  
pp. 214-218
Author(s):  
Da Peng Zhang ◽  
Wen Ming Cheng ◽  
Kun Cai

It is the most important inspection index of the deflection value for the girder of gantry crane under rated load in the overall test. In the overall test for large tonnage gantry crane which prepared for experimental weight is very difficult at the site, or even impossible perform test. In the text, it is deduced the girder deflection curve equation where considering the effects of the leg bending moment to the girder deflection When the concentrated load is applied to the position of L/2,L/3 and 2L/3 of the girder. The girder deflection value can be obtained under small load at the position of L/2,L/3 and 2L/3 of the girder and the actual moment of inertia of the girder and two side leg can be obtained. In this way, the deflection of the large tonnage gantry crane are predicted through the data of the three-position method in the small load test. Three-position small load test method provides a practical and effective method for the prediction of the girder deflection of large tonnage gantry structure.

Author(s):  
Yawen Wang ◽  
Junyi Yang ◽  
Dong Guo ◽  
Teik C Lim

A generalized dynamic model of driveline system is formulated that includes the coupling effect and gyroscopic moments of the propeller shaft and hypoid gear rotor assembly. Firstly, the dynamic models with only gear-shaft coupling, with only gyroscopic effect, and with both gear-shaft coupling and gyroscopic effect are analyzed and compared. The results show that the combined effects of the gear-shaft interaction and gyroscopic behavior have considerable influence on the system dynamic responses surrounding gear bending resonances, especially for the bearing responses. However, the gear out-of-phase torsional modes still dominate the gear mesh frequency response. Secondly, the influence of pinion bending moment of inertia, propeller shaft stiffness and bearing stiffness on the system dynamic responses are examined. The system responses are then applied to perform further vibration and acoustic analysis for an axle housing structure. Computational results reveal that NVH (noise, vibration, and harshness) refinement can be achieved by tuning the pinion bearing rotational stiffness and pinion bending moment of inertia for the example considered. This study provides an understanding of the interaction between hypoid gear pair and propeller shaft, and can be employed to enhance driveline system design.


2010 ◽  
Vol 152-153 ◽  
pp. 1058-1061
Author(s):  
Zhou Wei ◽  
Xiao Xia Zhang

A wedged load test method is used to evaluate the adhesion strength of high-strength coatings, which have been processed with various sintering parameters. In this test, for stress concentration at cut tip, cracks are always induced and expanded rapidly cross the interface between coating and substrate. Macro-fracture and SEM image of coating interface of high-strength coating are characterized using optical microscope and scanning electron microscopy (SEM), respectively. In order to evaluate the bonding properties between coating and substrate effectively, corresponding finite element (FE) analysis has been conducted to evaluate the adhesion strength of high-strength coating. And stress distributions cross the interface of high-strength coating are obtained. The stress analysis can help to evaluate the bond strength of high-strength coating. Because of small specimen and contact relationship between wedged pressure head and wedged cuts, complex stress state is affected by many factors resulting from interface, and also by the thickness of coating.


1993 ◽  
Vol 30 (1) ◽  
pp. 1-11
Author(s):  
R. Frank ◽  
H. Zervogiannis ◽  
S. Christoulas ◽  
V. Papadopoulos ◽  
N. Kalteziotis

This paper describes the behaviour of two test piles (one bored and postgrouted and one simply bored, both 31.7 m long and 0.75 m in diameter) subjected to horizontal loads. These full-scale pile tests were carried out for the actual design of the pile foundation of a pier of the Evripos cable-stayed bridge. This bridge will link the Euboea Island to mainland Greece. The two piles have already been subjected to bearing capacity tests under axial loadings. The inclinometer measurements, taken during the present tests, yielded, in particular, the deformed shape of the piles as well as the bending moments. Conclusions could be drawn for the final design of the pile foundation with respect to horizontal loadings. Furthermore, various calculation methods using p–y reaction curves for cohesionless soils have been checked: the Ménard pressuremeter method, the method of the American Petroleum Institute recommendations, and the Standard penetration test method of Christoulas. These pile tests show that simple measurements, taken on construction sites, can yield interesting results on the actual behaviour of horizontally loaded piles. Key words : pile, horizontal loading, full-scale test, horizontal loads, bending moment, subgrade reaction modulus, p–y curve, cohesionless soil, Standard penetration test, pressuremeter test.


1937 ◽  
Vol 4 (1) ◽  
pp. A1-A7 ◽  
Author(s):  
M. A. Biot

Abstract The elementary theory of the bending of a beam on an elastic foundation is based on the assumption that the beam is resting on a continuously distributed set of springs the stiffness of which is defined by a “modulus of the foundation” k. Very seldom, however, does it happen that the foundation is actually constituted this way. Generally, the foundation is an elastic continuum characterized by two elastic constants, a modulus of elasticity E, and a Poisson ratio ν. The problem of the bending of a beam resting on such a foundation has been approached already by various authors. The author attempts to give in this paper a more exact solution of one aspect of this problem, i.e., the case of an infinite beam under a concentrated load. A notable difference exists between the results obtained from the assumptions of a two-dimensional foundation and of a three-dimensional foundation. Bending-moment and deflection curves for the two-dimensional case are shown in Figs. 4 and 5. A value of the modulus k is given for both cases by which the elementary theory can be used and leads to results which are fairly acceptable. These values depend on the stiffness of the beam and on the elasticity of the foundation.


1950 ◽  
Vol 17 (1) ◽  
pp. 27-34
Author(s):  
P. E. Duwez ◽  
D. S. Clark ◽  
H. F. Bohnenblust

Abstract This paper presents the results of a theoretical and experimental investigation of the plastic deformation of long beams which are subjected to a concentrated transverse impact of constant velocity. In the theoretical analysis, the beam is supposed to be of infinite length, and plane cross sections are assumed to remain plane. The bending moment is assumed to depend on the curvature according to a function that is obtained from the stress-strain curve of the material. The theory neglects both the lateral displacement of the cross sections against each other due to the shearing force and the rotary kinetic energy of the motion of the beam. The theory shows that a strain is not propagated along a beam at constant velocity, as in the case of longitudinal impact. The strain depends on the ratio between the square of the distance from the point of impact and the time. This is correct regardless of the shape of the moment - curvature curve. If certain approximations are applied to the bending moment - curvature curve, the theory provides a method of computing the deflection curve of a beam at any instant during impact. An experimental study has been made in which the deflection curves of long simply supported beams have been obtained during impact. The deflection characteristics of a cold-rolled steel and an annealed-copper beam have been computed by approximating the bending moment - curvature curves. It is shown that for materials such as cold-rolled low-carbon steel, for which plastic deflection is localized at the point of impact, the observed deflection curve is closely approximated by computing a curve based on the assumption that the beam remains elastic. For a soft material like annealed copper, plastic deformation extends over a relatively large distance from the point of impact and, taking plastic deformation into account, a satisfactory agreement is obtained between theory and experimental results.


1985 ◽  
Vol 22 (4) ◽  
pp. 592-599
Author(s):  
R. G. Horvath

A multiple loading testing method is suggested, which permits testing a single drilled pier foundation under three different conditions of load support. The pier may be tested under conditions of combined shaft and end-bearing resistance, end-bearing resistance only, and shaft resistance only. The advantages of this multiple loading test method include observation of the load-transfer and displacement behaviours of the pier under these three different support conditions and verification of the values obtained for the components of load support, i.e., shaft and end-bearing resistance, all from a single test pier.A special base load cell capable of performing a different function during each cycle of loading is required. A suitable load cell, consisting of a series of Freyssi flatjacks, and the method of operation are described.A multiple loading test procedure was used successfully as part of a field investigation program on full-scale pier sockets in weak shale. Data on the load-displacement behaviour of the pier tested using the multiple loading method are reported. Information concerning piers tested using conventional single loading methods are provided for comparison.The multiple loading test results were in good agreement with results obtained from conventional testing methods. Thus the multiple loading test method provides an economical means of obtaining a large amount of design information for drilled pier foundation systems, using a single test pier. Key words: field load test, multiple loading, drilled piers and caissons, shaft resistance, end-bearing resistance, combined shaft and end-bearing resistances, base load cell, shale.


Sign in / Sign up

Export Citation Format

Share Document