Hopf Bifurcation Analysis in a Modified Optically Injected Semiconductor Lasers Model

2014 ◽  
Vol 631-632 ◽  
pp. 254-260
Author(s):  
Jiang Ang Zhang ◽  
Wen Ju Du ◽  
Kutorzi Edwin Yao

In this paper, a modified optically injected semiconductor lasers model is studied in detail. More precisely, we study the stability of the equilibrium points and basic dynamic properties of the autonomous system by means of nonlinear dynamics theory. The existence of Hopf bifurcation is investigated by choosing the appropriate bifurcation parameter. Furthermore, formulas for determining the stability and the conditions for generating Hopf bifurcation of the equilibria are derived. Then, a numerical example is given.

2021 ◽  
Vol 3 (1) ◽  
pp. 16-25
Author(s):  
Adin Lazuardy Firdiansyah

In this research, we formulate and analyze an eco-epidemiology model of the modified Leslie-Gower model with Holling type III by incorporating prey refuge and harvesting. In the model, we find at most six equilibrium where three equilibrium points are unstable and three equilibrium points are locally asymptotically stable. Furthermore, we find an interesting phenomenon, namely our model undergoes Hopf bifurcation at the interior equilibrium point by selecting refuge as the bifurcation parameter. Moreover, we also conclude that the stability of all populations occurs faster when the harvesting rate increases.  In the end, several numerical solutions are presented to check the analytical results.


2012 ◽  
Vol 2012 ◽  
pp. 1-20 ◽  
Author(s):  
Gang Zhu ◽  
Junjie Wei

The dynamics of a system of two semiconductor lasers, which are delay coupled via a passive relay within the synchronization manifold, are investigated. Depending on the coupling parameters, the system exhibits synchronized Hopf bifurcation and the stability switches as the delay varies. Employing the center manifold theorem and normal form method, an algorithm is derived for determining the Hopf bifurcation properties. Some numerical simulations are carried out to illustrate the analysis results.


2016 ◽  
Vol 26 (07) ◽  
pp. 1650119 ◽  
Author(s):  
Maoxin Liao ◽  
Qi-Ru Wang

In this paper, the dynamic properties for a Brusselator-type system with diffusion are investigated. By employing the theory of Hopf bifurcation for ordinary and partial differential equations, we mainly obtain some conditions of the stability and Hopf bifurcation for the ODE system, diffusion-driven instability of the equilibrium solution, and the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions for the PDE system. Finally, some numerical simulations are presented to verify our results.


2021 ◽  
Vol 1 (1) ◽  
pp. 16-25
Author(s):  
Adin Lazuardy Firdiansyah

In this research, we formulate and analyze an eco-epidemiology model of the modified Leslie-Gower model with Holling type III by incorporating prey refuge and harvesting. In the model, we find at most six equilibrium where three equilibrium points are unstable and three equilibrium points are locally asymptotically stable. Furthermore, we find an interesting phenomenon, namely our model undergoes Hopf bifurcation at the interior equilibrium point by selecting refuge as the bifurcation parameter. Moreover, we also conclude that the stability of all populations occurs faster when the harvesting rate increases.  In the end, several numerical solutions are presented to check the analytical results.


2017 ◽  
Vol 2017 ◽  
pp. 1-14
Author(s):  
Hongwei Luo ◽  
Jiangang Zhang ◽  
Wenju Du ◽  
Jiarong Lu ◽  
Xinlei An

A PI hydroturbine governing system with saturation and double delays is generated in small perturbation. The nonlinear dynamic behavior of the system is investigated. More precisely, at first, we analyze the stability and Hopf bifurcation of the PI hydroturbine governing system with double delays under the four different cases. Corresponding stability theorem and Hopf bifurcation theorem of the system are obtained at equilibrium points. And then the stability of periodic solution and the direction of the Hopf bifurcation are illustrated by using the normal form method and center manifold theorem. We find out that the stability and direction of the Hopf bifurcation are determined by three parameters. The results have great realistic significance to guarantee the power system frequency stability and improve the stability of the hydropower system. At last, some numerical examples are given to verify the correctness of the theoretical results.


2010 ◽  
Vol 44-47 ◽  
pp. 1923-1927 ◽  
Author(s):  
Xian Jie Meng

A two degrees of freedom nonlinear dynamics model of self-excited vibration induced by dry-friction of brake disk and pads is built firstly, the stability of vibration system at the equilibrium points is analyzed using the nonlinear dynamics theory. Finally the numerical method is taken to study the impacts of friction coefficient on brake groan. The calculation result shows that with the increase of kinetic friction coefficient /or the decrease of difference value between static friction coefficient and kinetic friction coefficient can prevent or restrain self-excited vibration from happening.


Author(s):  
HUI CAO ◽  
Dongxue Yan ◽  
Xiaxia Xu

This paper deals with an SIR model with age structure of infected individuals. We formulate the model as an abstract non-densely defined Cauchy problem and derive the conditions for the existence of all the feasible equilibrium points of the system. The criteria for both stability and instability involving system parameters are obtained. Bifurcation analysis indicates that the system with age structure exhibits Hopf bifurcation which is the main result of this paper. Finally, some numerical examples are provided to illustrate our obtained results.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Shuling Yan ◽  
Xinze Lian ◽  
Weiming Wang ◽  
Youbin Wang

We investigate a modified delayed Leslie-Gower model under homogeneous Neumann boundary conditions. We give the stability analysis of the equilibria of the model and show the existence of Hopf bifurcation at the positive equilibrium under some conditions. Furthermore, we investigate the stability and direction of bifurcating periodic orbits by using normal form theorem and the center manifold theorem.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
G. Kai ◽  
W. Zhang ◽  
Z. Jin ◽  
C. Z. Wang

The complex chaotic dynamics and multistability of financial system are some important problems in micro- and macroeconomic fields. In this paper, we study the influence of two-delay feedback on the nonlinear dynamics behavior of financial system, considering the linear stability of equilibrium point under the condition of single delay and two delays. The system undergoes Hopf bifurcation near the equilibrium point. The stability and bifurcation directions of Hopf bifurcation are studied by using the normal form method and central manifold theory. The theoretical results are verified by numerical simulation. Furthermore, one feature of the proposed financial chaotic system is that its multistability depends extremely on the memristor initial condition and the system parameters. It is shown that the nonlinear dynamics of financial chaotic system can be significantly changed by changing the values of time delays.


2020 ◽  
Vol 30 (04) ◽  
pp. 2050053
Author(s):  
Mainul Hossain ◽  
Nikhil Pal ◽  
Sudip Samanta ◽  
Joydev Chattopadhyay

In the present paper, we investigate the impact of fear in an intraguild predation model. We consider that the growth rate of intraguild prey (IG prey) is reduced due to the cost of fear of intraguild predator (IG predator), and the growth rate of basal prey is suppressed due to the cost of fear of both the IG prey and the IG predator. The basic mathematical results such as positively invariant space, boundedness of the solutions, persistence of the system have been investigated. We further analyze the existence and local stability of the biologically feasible equilibrium points, and also study the Hopf-bifurcation analysis of the system with respect to the fear parameter. The direction of Hopf-bifurcation and the stability properties of the periodic solutions have also been investigated. We observe that in the absence of fear, omnivory produces chaos in a three-species food chain system. However, fear can stabilize the chaos thus obtained. We also observe that the system shows bistability behavior between IG prey free equilibrium and IG predator free equilibrium, and bistability between IG prey free equilibrium and interior equilibrium. Furthermore, we observe that for a suitable set of parameter values, the system may exhibit multiple stable limit cycles. We perform extensive numerical simulations to explore the rich dynamics of a simple intraguild predation model with fear effect.


Sign in / Sign up

Export Citation Format

Share Document