The Analysis on Rigid Core Pile Composite Foundation Dynamic

2014 ◽  
Vol 638-640 ◽  
pp. 601-604
Author(s):  
Wei Yu Wang

Through studying the field test results of rigid core pile composite foundation, Analyzing dynamic characteristics and dynamic response from peak acceleration and frequency duration, peak velocity and seismic waves. The following conclusion were got: Along with the rising of the upper load, peak acceleration of rigid core pile decrease, The frequency of Rigid core pile was between 6Hz-44Hz, Peak rate in the bottom of core pile have obvious change.

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yingying Zhao ◽  
Weiming Gong ◽  
Xianzhang Ling ◽  
Peng Li ◽  
Ziyu Wang ◽  
...  

Gravel cushions have been introduced as a practical and efficient seismic isolation technology to ensure the safety of nuclear power plants. This study investigated the seismic isolation effect of a gravel cushion by conducting a series of shaking table tests on a model foundation with a cushion built of three different types of graded aggregates (single-sized (2–5 mm), two-sized (2–5 mm:5–10 mm = 3 : 1), and continuously graded) under input El Centro seismic waves with three different peak accelerations (0.1 g, 0.2 g, and 0.3 g). The testing results showed that the seismic isolation effect of the gravel cushion increased with the peak seismic acceleration. The gravel cushion built with single-sized aggregates had better seismic isolation performance than gravel cushions built with two-sized or continuously graded aggregates. Under input seismic waves with 0.1 g peak acceleration, the single-sized aggregate gravel cushion still had a seismic isolation effect with a vibration reduction rate of approximately 11.81%, whereas the other two gravel cushions had no effect. Under input seismic waves with peak accelerations of 0.2 g and 0.3 g, all three gravel cushions had seismic isolation effects with vibration reduction rates of approximately 18.63% and 17.92%, respectively. An empirical model is proposed for predicting the vibration reduction rate of the cushion. Under input seismic waves with 0.3 g peak acceleration, the ultimate vibration reduction rate of the gravel cushion fell between 20.44% and 31.33%. The gravel cushion is an excellent option for nuclear power plant foundations with high requirements for seismic isolation, provided that the required bearing capacity is satisfied.


1990 ◽  
Author(s):  
David M. Bailey ◽  
Stuart D. Foltz ◽  
Myer J. Rosenfield
Keyword(s):  

2021 ◽  
Vol 13 (10) ◽  
pp. 5708
Author(s):  
Bo-Ram Park ◽  
Ye-Seul Eom ◽  
Dong-Hee Choi ◽  
Dong-Hwa Kang

The purpose of this study was to evaluate outdoor PM2.5 infiltration into multifamily homes according to the building characteristics using regression models. Field test results from 23 multifamily homes were analyzed to investigate the infiltration factor and building characteristics including floor area, volume, outer surface area, building age, and airtightness. Correlation and regression analysis were then conducted to identify the building factor that is most strongly associated with the infiltration of outdoor PM2.5. The field tests revealed that the average PM2.5 infiltration factor was 0.71 (±0.19). The correlation analysis of the building characteristics and PM2.5 infiltration factor revealed that building airtightness metrics (ACH50, ELA/FA, and NL) had a statistically significant (p < 0.05) positive correlation (r = 0.70, 0.69, and 0.68, respectively) with the infiltration factor. Following the correlation analysis, a regression model for predicting PM2.5 infiltration based on the ACH50 airtightness index was proposed. The study confirmed that the outdoor-origin PM2.5 concentration in highly leaky units could be up to 1.59 times higher than that in airtight units.


2008 ◽  
Vol 22 (09n11) ◽  
pp. 1443-1448
Author(s):  
YUE-XIU WU ◽  
QUAN-SHENG LIU

To understand the dynamic response of transversely isotropic material under explosion load, the analysis is done with the help of ABAQUS software and the constitutive equations of transversely isotropic material with different angle of isotropic section. The result is given: when the angle of isotropic section is settled, the velocity and acceleration of measure points decrease with the increasing distance from the explosion borehole. The velocity and acceleration in the loading direction are larger than those in the normal direction of the loading direction and their attenuation are much faster. When the angle of isotropic section is variable, the evolution curves of peak velocity and peak acceleration in the loading direction with the increasing angles are notching parabolic curves. They get their minimum values when the angle is equal to 45 degree. But the evolution curves of peak velocity and peak acceleration in the normal direction of the loading direction with the increasing angles are overhead parabolic curves. They get their maximum values when the angle is equal to 45 degree.


2017 ◽  
Author(s):  
P. Millot ◽  
F. K. Wong ◽  
D. A. Rose ◽  
T. Zhou ◽  
R. Grover ◽  
...  

2008 ◽  
Author(s):  
V.G. Bedrin ◽  
M.M. Khasanov ◽  
R.A. Khabibullin ◽  
V.A. Krasnov ◽  
A.A. Pashali ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document