Numerical Simulation of Rock Breaking by Disc Cutter of Tunnel Boring Machine

2014 ◽  
Vol 638-640 ◽  
pp. 888-893
Author(s):  
Qi Xing Wu ◽  
Guang Feng An ◽  
Xiao Wen Zhou ◽  
Lin Chen

By using the explicit nonlinear dynamic analysis program of LS-DYNA, three-dimension finite element model of rock breaking by disc cutter of tunnel boring machine is established, in which elastic material is adopted to describe the elastic behavior of cutter ring and Holmguist Johnson Concrete (HJC) model is adopted to describe the brittle behavior of rock. With the finite element method, the process of rock breaking by disc cutter is simulated, and then the movement characteristics, forces of disc cutter and rock fragmentation mechanism are analyzed. The results indicate that the numerical technique can contribute to gaining an understanding of rock breaking mechanism by disc cutter and improving the design of disc cutter parameters.

2014 ◽  
Vol 615 ◽  
pp. 22-26
Author(s):  
Xiang Heng Zhu ◽  
Yi Min Xia ◽  
Tao Ouyang ◽  
Kai Yang

Cutterheads and disc cutters are the key components of Tunnel Boring Machine (TBM) used to fulfill the rock-breaking task. In order to study the variation and distribution law of cutting forces induced by disc cutters on TBM cutterhead, a finite element model of rock-breaking process is established based on the extended Drucker-Prager yield criterion for rock and then the excavating process of cutterhead is simulated. The simulation results show that: in the rock fragmentation process, the rock-breaking forces are step changing; with the increase of installation radius, the vertical forces of inner and face cutters increase, while the lateral forces decrease; with the increase of installation angle, the vertical forces of edge disc cutters decrease, while the lateral forces increase; the mean total thrust and torque of cutterhead are 5418.2 kN and 1624.4 kN·m respectively, the simulation results are verified by engineering data.


2013 ◽  
Vol 690-693 ◽  
pp. 2484-2489 ◽  
Author(s):  
Peng Zhou ◽  
Chao Wang ◽  
Wei Xian Gao ◽  
Yu Hou Wu

Rock tunnel boring machine is one of the main machineries and equipments for underground engineering, and the failure of tool systems is its main failure form. Rock hob test-bed is the only testing equipment for tool failure and wear. In this paper, the breaking rock by the double disc cutter is simulated and four kinds of rocks are selected to test the influece of rock characteristics and spacing between two disc cutters on the rock breaking by the double disc cutter test-bed. The results show that there is different optimal spacing between two disc cutters for different rock; the optimal spacing is inversely proportional to the hardness of the rocks; the maximum stress appears the boundary between the disc cutter and rock.


2019 ◽  
Vol 32 (1) ◽  
Author(s):  
Meidong Han ◽  
Zongxi Cai ◽  
Chuanyong Qu

AbstractCutterhead loads are the key mechanical parameters for the strength design of the full face hard rock tunnel boring machine (TBM). Due to the brittle rock-breaking mechanism, the excavation loads acting on cutters fluctuate strongly and show some randomness. The conventional method that using combinations of some special static loads to perform the strength design of TBM cutterhead may lead to strength failure during working practice. In this paper, a three-dimensional finite element model for coupled Cutterhead–Rock is developed to determine the cutterhead loads. Then the distribution characteristics and the influence factors of cutterhead loads are analyzed based on the numerical results. It is found that, as time changes, the normal and tangential forces acting on cutters and the total torque acting on the cutterhead approximately distribute log normally, while the total thrusts acting on the cutterhead approximately show a normal distribution. Furthermore, the statistical average values of cutterhead loads are proportional to the uniaxial compressive strength (UCS) of cutting rocks. The values also change with the penetration and the diameter of cutterhead following a power function. Based on these findings, we propose a three-parameter model for the mean of cutterhead loads and a method of generating the random cutter forces. Then the strength properties of a typical cutterhead are analyzed in detail using loads generated by the new method. The optimized cutterhead has been successfully applied in engineering. The method in this paper may provide a useful reference for the strength design of TBM cutterhead.


2014 ◽  
Vol 487 ◽  
pp. 513-516 ◽  
Author(s):  
Yu Zhang ◽  
Xing Wen Wang ◽  
Hui Fang Liu

The force load research of disc cutter can be used in the design of disc cutter, in order to improve the working life, determine when to change another cutter. Based on the working platform of ABAQUS finite element analysis module, single disc cutter rock-breaking of the simulation model is established, and according to the theory of rocks plastic rule, dynamics analysis and dynamic simulation are done when the cutter is in rock-breaking process by which, the added force can be got when the disc cutter and rocks contact each other in different wear conditions of contact force in the process of the dynamic contact each other. The results show that with the cutter damage increasing, the added force is increased and cutters maximum instantaneous stress load is 1.5 ~ 2.5 times than the average stress load, which has a negative influence on working efficiency. To have a clear understand of cutters design and working life and when to change another cutter in working time, the results also offer an engineering parameters for researching the load state of TBM tunneling.


2020 ◽  
Vol 12 (10) ◽  
pp. 168781402096229
Author(s):  
Jinliang Zhang ◽  
Yongchang Li ◽  
Yuansheng Zhang ◽  
Fengwei Yang ◽  
Chao Liang ◽  
...  

The concept of tunnel boring machine (TBM) disc cutter rock breaking coupled with high-pressure water jets has been proposed to overcome the difficulties that occur when TBMs encounter extremely hard rocks. Thus, to meet actual engineering requirements for the TBM construction of tunnels as part of the Wan’anxi water diversion project in Longyan City (Fujian Province, China), experiments were conducted on high-pressure water jet-assisted TBM disc cutter rock breaking. By varying kerf depth and width under different water jet parameters and performing disc cutter rock breaking tests on rock surfaces with no kerf, single kerf, and double kerfs, the effects of different kerf depths on the disc cutter rock breaking process, load, and efficiency were examined. The test results showed that high-pressure water jets can generate the regular kerfs required for the coupled disc cutter rock breaking of granite. Employing the coupled rock breaking method also resulted in a decrease in specific energy and an approximately 40% decrease in the normal force of the disc cutter, thereby significantly improving rock breaking efficiency. These results provide key technical parameters for the design and manufacture of high-pressure water jet-assisted rock-breaking TBMs and serves as a reference for similar processes.


2013 ◽  
Vol 791-793 ◽  
pp. 742-745 ◽  
Author(s):  
An Ning Zhang ◽  
Zhao Feng Zhu ◽  
Feng Zhu

In this paper, finite element software ANSYS is used to simulate a process of disc cutters of different diameter breaking rock, get the curves of the load of disc cutter of different diameter breaking rock and the curves of the stress exerting on the cutters when the disc cutters cutting different depth. According to the rock breaking mechanism of disc cutter, and established five kinds of disc cutter of different diameter broken rock finite element model, and the numerical simulation was carried out. The loads of disc cutters of different diameter breaking rock and the stress exerting on the cutters are different when the disc cutters cutting different depths. According to the result of the analysis, draw the curve graph of the load of disc cutter breaking rock and the stress exerting on the cutters when the disc cutters of different diameter cutting different depth. According to the curve diagram, the load of disc cutter of different diameter cutting a certain depth and the stress of exerting on the disc cutters can be gotten. The simulative result is instructive for improving the design of disc cutter parameters and improving the development efficiency.


2014 ◽  
Vol 651-653 ◽  
pp. 988-991 ◽  
Author(s):  
Nan Zhao ◽  
Li Wei Song

Full face rock tunnel boring machine in construction process, disc cutter put pressure on rock breaking, actually belongs to the process of energy transfer, from the point of view of energy analysis the energy transfer rules in the process of disc cutter rock breaking, based on CSM force prediction model, analysis disc cutter energy input and rock mass energy output efficiency ratio, for excavation with minimum energy efficiency. Taking S-536 Hong Kong water tunnel TBM as an example, When the penetration is 10mm, based on the energy efficiency ratio the optimal disc cutter spacing should be less than 70mm, than the actual average disc cutter spacing is small 2mm, rock mass as a reference the disc cutter rock breaking efficiency mechanism provides certain reference value for the cutter layout.


2012 ◽  
Vol 178-181 ◽  
pp. 1495-1498
Author(s):  
Li Jun Suo

Load stress, which is caused by traffic loading, is important parameter used in the analysis of the new pavement design. In order to study the load stress of lean concrete base in the asphalt pavement, first of all, three–dimension finite element model of the asphalt pavement is established. The main objectives of the paper are investigated. One is calculation for load stress of lean concrete base, and the other is analysis for relationship between load stress of lean concrete base and parameters, such as thickness, modulus. The results show that load stress of lean concrete base decreases, decreases and increases with increase of base’s thickness, surface’s thickness and ratio of base’s modulus to foundation’s modulus respectively. So far as the traffic axle loading is concerned, it has a significant impact on load stress of lean concrete base, and it can be seen from results that when load is taken from 100kN to 220kN, load stress increases quickly with the increase of the traffic axle loading.


Sign in / Sign up

Export Citation Format

Share Document