Research of Intelligent Control of Traffic Signal

2014 ◽  
Vol 644-650 ◽  
pp. 107-111
Author(s):  
Xiang Li ◽  
Jin Song Du ◽  
Jing Tao Hu ◽  
Xin Bi

At present, in the field of intelligent control of traffic signal, most of scholars at home and abroad use fuzzy control and intelligent algorithm, such as genetic algorithm, ant colony optimization, particle swarm optimization, multi-agent, artificial neural networks, fuzzy method etc. This paper summarizes and analyzes these algorithms, points out the problems and shortcomings in the present research, puts forward the direction and trend in the future research. These works have certain directive significance to the research and development of intelligent control of traffic signal.

2019 ◽  
Vol 10 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Kuruge Darshana Abeyrathna ◽  
Chawalit Jeenanunta

This research proposes a new training algorithm for artificial neural networks (ANNs) to improve the short-term load forecasting (STLF) performance. The proposed algorithm overcomes the so-called training issue in ANNs, where it traps in local minima, by applying genetic algorithm operations in particle swarm optimization when it converges to local minima. The training ability of the hybridized training algorithm is evaluated using load data gathered by Electricity Generating Authority of Thailand. The ANN is trained using the new training algorithm with one-year data to forecast equal 48 periods of each day in 2013. During the testing phase, a mean absolute percentage error (MAPE) is used to evaluate performance of the hybridized training algorithm and compare them with MAPEs from Backpropagation, GA, and PSO. Yearly average MAPE and the average MAPEs for weekdays, Mondays, weekends, Holidays, and Bridging holidays show that PSO+GA algorithm outperforms other training algorithms for STLF.


2022 ◽  
pp. 227-241
Author(s):  
Kuruge Darshana Abeyrathna ◽  
Chawalit Jeenanunta

This research proposes a new training algorithm for artificial neural networks (ANNs) to improve the short-term load forecasting (STLF) performance. The proposed algorithm overcomes the so-called training issue in ANNs, where it traps in local minima, by applying genetic algorithm operations in particle swarm optimization when it converges to local minima. The training ability of the hybridized training algorithm is evaluated using load data gathered by Electricity Generating Authority of Thailand. The ANN is trained using the new training algorithm with one-year data to forecast equal 48 periods of each day in 2013. During the testing phase, a mean absolute percentage error (MAPE) is used to evaluate performance of the hybridized training algorithm and compare them with MAPEs from Backpropagation, GA, and PSO. Yearly average MAPE and the average MAPEs for weekdays, Mondays, weekends, Holidays, and Bridging holidays show that PSO+GA algorithm outperforms other training algorithms for STLF.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Mehmet Hacibeyoglu ◽  
Mohammed H. Ibrahim

Multilayer feed-forward artificial neural networks are one of the most frequently used data mining methods for classification, recognition, and prediction problems. The classification accuracy of a multilayer feed-forward artificial neural networks is proportional to training. A well-trained multilayer feed-forward artificial neural networks can predict the class value of an unseen sample correctly if provided with the optimum weights. Determining the optimum weights is a nonlinear continuous optimization problem that can be solved with metaheuristic algorithms. In this paper, we propose a novel multimean particle swarm optimization algorithm for multilayer feed-forward artificial neural networks training. The proposed multimean particle swarm optimization algorithm searches the solution space more efficiently with multiple swarms and finds better solutions than particle swarm optimization. To evaluate the performance of the proposed multimean particle swarm optimization algorithm, experiments are conducted on ten benchmark datasets from the UCI repository and the obtained results are compared to the results of particle swarm optimization and other previous research in the literature. The analysis of the results demonstrated that the proposed multimean particle swarm optimization algorithm performed well and it can be adopted as a novel algorithm for multilayer feed-forward artificial neural networks training.


Fuel ◽  
2020 ◽  
Vol 267 ◽  
pp. 117221 ◽  
Author(s):  
Diego Galvan ◽  
Hágata Cremasco ◽  
Ana Carolina Gomes Mantovani ◽  
Evandro Bona ◽  
Mário Killner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document