Multi-Resolution Analysis of the Acousto-Ultrasonic Testing Signal for Composite Material Detection

2011 ◽  
Vol 65 ◽  
pp. 108-112
Author(s):  
Bin Jing ◽  
Chunan Ai ◽  
Yu Liu

The AU technique is employed in this paper to test the specimen which is made up of composite shell and adiabatic layer; the noise in the tested signal is reduced by adaptive filtering; Multi-resolution analysis of the signal is achieved by wavelet transform. By comparing the ratio of the energy of signal in different frequency zones to the total energy, the characteristic frequency zone of the signal is gained. The characteristic frequency zone of the signal from specimen is evaluated by energy integral Stress Wave Factor (SWF). Flaws are found effectively, and the size of flaw can be evaluated qualitatively. The validity of AU test for bond quality of the structure is approved in the experiments.

The most common technique used for image processing applications is ‘The wavelet transformation’. The Discrete Wavelet Transform (DWT) keeps the time as well as frequency information depend on a multi resolution analysis structure, where the other classical transforms like Fast Fourier Transform (FFT), Discrete Cosine Transform (DCT) will not do that. Because of this feature, the quality of the repaired image is improved when comparing to the other transforms. To implement the DWT on a real time codec, a fast device needs to be targeted. While comparing with the other implementation such as PCs, ARM processors, DSPs etc, Field Programmable Gate Array (FPGA) implementation of DWT had better processing speed and costs were vey less. A Fast Architecture based DWT using Kogge Stone Adder is proposed in this paper where the coefficients of lifting scheme are calculated by using Shift adder and Kogge Stone Adder where other techniques used multiplier. The most important intention of the suggested technique is to use minimum calculation and limited memory. The simulation of the suggested design is dole out on the Xilinx 14.1 style tool and also the performance is evaluated and compared with the present architectures.


2012 ◽  
Vol 214 ◽  
pp. 375-380 ◽  
Author(s):  
Tie Yun Li

An edge detection algorithm is developed for coal gangue images, and the method has two advantages compared with traditional ones. Firstly, multi-resolution analysis of wavelet transform can improve the quality of edge detection. Secondly, the algorithm is faster for real time. Since the threshold directly from the coefficients of wavelet transform, the rate of recognition for coal gangue is highly raised. The experiment results show that the method is an efficient edge detection algorithm for extraction edges from the noised images of coal gangues.


Author(s):  
A. Akilandeswari ◽  
◽  
Annie Grace Vimala ◽  
D. Sungeetha ◽  
◽  
...  

The most common technique used for image processing applications is ‘The wavelet transformation’. The Discrete Wavelet Transform (DWT) keeps the time as well as frequency information depend on a multi resolution analysis structure, where the other classical transforms like Fast Fourier Transform (FFT), Discrete Cosine Transform (DCT) will not do that. Because of this feature, the quality of the repaired image is improved when comparing to the other transforms. To implement the DWT on a real time codec, a fast device needs to be targeted. While comparing with the other implementation such as PCs, ARM processors, DSPs etc, Field Programmable Gate Array (FPGA) implementation of DWT had better processing speed and costs were vey less. A Fast Architecture based DWT using Kogge Stone Adder is proposed in this paper where the coefficients of lifting scheme are calculated by using Shift adder and Kogge Stone Adder where other techniques used multiplier. The most important intention of the suggested technique is to use minimum calculation and limited memory. The simulation of the suggested design is dole out on the Xilinx 14.1 style tool and also the performance is evaluated and compared with the present architectures.


Author(s):  
Jennifer K. Ryan

AbstractThis article focuses on exploiting superconvergence to obtain more accurate multi-resolution analysis. Specifically, we concentrate on enhancing the quality of passing of information between scales by implementing the Smoothness-Increasing Accuracy-Conserving (SIAC) filtering combined with multi-wavelets. This allows for a more accurate approximation when passing information between meshes of different resolutions. Although this article presents the details of the SIAC filter using the standard discontinuous Galerkin method, these techniques are easily extendable to other types of data.


2021 ◽  
Vol 65 (4) ◽  
pp. 953-998
Author(s):  
Mark A. Iwen ◽  
Felix Krahmer ◽  
Sara Krause-Solberg ◽  
Johannes Maly

AbstractThis paper studies the problem of recovering a signal from one-bit compressed sensing measurements under a manifold model; that is, assuming that the signal lies on or near a manifold of low intrinsic dimension. We provide a convex recovery method based on the Geometric Multi-Resolution Analysis and prove recovery guarantees with a near-optimal scaling in the intrinsic manifold dimension. Our method is the first tractable algorithm with such guarantees for this setting. The results are complemented by numerical experiments confirming the validity of our approach.


2021 ◽  
pp. 002029402110130
Author(s):  
Guan Chen ◽  
Zhiren Zhu ◽  
Jun Hu

This study proposed a simple and effective response spectrum-compatible ground motions simulation method to mitigate the scarcity of ground motions on seismic hazard analysis base on wavelet-based multi-resolution analysis. The feasibility of the proposed method is illustrated with two recorded ground motions in El Mayor-Cucapah earthquake. The results show that the proposed method enriches the ground motions exponentially. The simulated ground motions agree well with the attenuation characteristics of seismic ground motion without modulating process. Moreover, the pseudo-acceleration response spectrum error between the recorded ground motion and the average of the simulated ground motions is 5.2%, which fulfills the requirement prescribed in Eurocode 8 for artificially simulated ground motions. Besides, the cumulative power spectra between the simulated and recorded ground motions agree well on both high- and low-frequency regions. Therefore, the proposed method offers a feasible alternative in enriching response spectrum-compatible ground motions, especially on the regions with insufficient ground motions.


Sign in / Sign up

Export Citation Format

Share Document