Optimal Design of the Control System for an Industrial Robot Using DOE Technique and Regression Model

2014 ◽  
Vol 658 ◽  
pp. 626-631
Author(s):  
Monica Enescu ◽  
Cătălin Alexandru

This paper approaches the optimization of the control system for an industrial robot with 6 axes (degrees of freedom), using design of experiments (DOE) and multiple linear regression models. The design objective refers to the desired trajectory of the end-effector, the aim being to minimize the difference between the desired (imposed) and current (measured) angles in the revolute joints of the robot. The correlation between the imposed trajectory of the end-effector and the corresponding angular motions in the six revolute joints is obtained through the inverse kinematic analysis. The characteristic parameters of the controllers are used as design variables in the optimization. The optimal design is based on the DOE Screening investigation strategy with the Full Factorial design type. This design was chosen in order to evaluate the effect of the factors and of their interaction on trajectory, and the levels of these factors needed to produce an optimal trajectory. By comparing actual data with data after optimization, it shows that the regression function is correct (in terms of goodness of fit). The dynamic model of the robotic system was developed in mechatronic concept, by integrating the mechanical device (designed in ADAMS/View) and the control system (MATLAB/Simulink) at the virtual prototype level. The optimization study is performed by using ADAMS/Insight.

2016 ◽  
Vol 19 (3) ◽  
pp. 24-33
Author(s):  
Hung Minh Vu ◽  
Trung Quang Trinh ◽  
Thang Quoc Vo

This paper proposes a new kinematic structure of a redundant serial robot arm and presents forward and inverse kinematic analysis. This is a new structure developed based on the robot IRB 2400 of ABB. The new structure consists of six revolute joints and two prismatic joints. The proposed robot arm has only seven degrees of freedom because the structure has a constraint between two revolute joints. Two prismatic joints help to expand workspaces of manipulator from small to very large. The paper describes in details about forward and inverse kinematics. Forward kinematics is derived based on DH Convention while inverse kinematics is calculated based on an objective function to minimize motions of a revolute joint and two prismatic joints. The simulation results on Matlab software indicated that the joint positions and velocities of a redundant serial robot arm matched well the trajectories in Cartesian Space.


Robotica ◽  
2014 ◽  
Vol 33 (4) ◽  
pp. 747-767 ◽  
Author(s):  
Masayuki Shimizu

SUMMARYThis paper proposes an analytical method of solving the inverse kinematic problem for a humanoid manipulator with five degrees-of-freedom (DOF) under the condition that the target orientation of the manipulator's end-effector is not constrained around an axis fixed with respect to the environment. Since the number of the joints is less than six, the inverse kinematic problem cannot be solved for arbitrarily specified position and orientation of the end-effector. To cope with the problem, a generalized unconstrained orientation is introduced in this paper. In addition, this paper conducts the singularity analysis to identify all singular conditions.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Xinjun Sheng ◽  
Zhao Ma ◽  
Ningbin Zhang ◽  
Wei Dong

Abstract This paper presents the development of a six degrees-of-freedom manipulator with soft end-effector and an inverse kinematic compensator for aerial contact manipulation. Realizing the fact that aerial manipulators can hardly achieve precise position control, a compliant manipulator with soft end-effector is first developed to moderate end-effector positioning errors. The manipulator is designed to be rigid-soft combined. The rigid robotic arm employs the lightweight but high-strength materials. The compliance requirement is achieved by the soft end-effector so that the mechanical design for the joints are largely simplified. These two features are beneficial to lighten the arm and to ensure the accuracy. In the meantime, the pneumatic soft end-effector can further moderate the probable insufficient accuracy by endowing the manipulator with compliance for impact resistance and robustness to positioning errors. With the well-designed manipulator, an inverse kinematic compensator is then proposed to eliminate lumped disturbances from the aerial platform. The compensator can ensure the stabilization of the end-effector by using state estimation from the aerial platform, which is robust and portable as the movement of the platform can be reliably obtained. Both the accuracy and compliance have been well demonstrated after being integrated into a hexarotor platform, and a representative scenario aerial task repairing the wind turbine blade-coating was completed successfully, showing the potential to accomplish complex aerial manipulation tasks.


Author(s):  
Constantinos Mavroidis ◽  
Munshi Alam ◽  
Eric Lee

Abstract This paper studies the geometric design of spatial two degrees of freedom, open loop robot manipulators with revolute joints that perform tasks, which require the positioning of the end-effector in three spatial locations. This research is important in situations where a robotic manipulator or mechanism with a small number of joint degrees of freedom is designed to perform higher degree of freedom end-effector tasks. The loop-closure geometric equations provide eighteen design equations in eighteen unknowns. Polynomial Elimination techniques are used to solve these equations and obtain the manipulator Denavit and Hartenberg parameters. A sixth order polynomial is obtained in one of the design parameters. Only two of the six roots of the polynomial are real and they correspond to two different robot manipulators that can reach the desired end-effector poses.


1991 ◽  
Vol 3 (5) ◽  
pp. 394-400 ◽  
Author(s):  
Hideki Hashimoto ◽  
◽  
Takashi Kubota ◽  
Motoo Sato ◽  
Fumio Harashima ◽  
...  

This paper describes a control scheme for a robotic manipulator system which uses visual information to position and orientate the end-effector. In the scheme the position and the orientation of the target workpiece with respect to the base frame of the robot are assumed to be unknown, but the desired relative position and orientation of the end-effector to the target workpiece are given in advance. The control system directly integrates visual data into the servoing process without subdividing the process into determination of the position, orientation of the workpiece and inverse kinematic calculation. An artificial neural network system is used for determining the change in joint angles required in order to achieve the desired position and orientaion. The proposed system can control the robot so that it approach the desired position and orientaion from arbitary initial ones. Simulation for the robotic manipulator with six degrees of freedom is done. The validity and the effectiveness of the proposed control scheme are varified by computer simulations.


2000 ◽  
Vol 12 (4) ◽  
pp. 385-393
Author(s):  
Hiroyuki Nagamatsu ◽  
◽  
Takashi Kubota ◽  
Ichiro Nakatani

This paper describes a practical control scheme for autonomous capture of a free-flying satellite in space using an onboard manipulator. In capturing a satellite, a reference trajectory for control of a manipulator is generated with a time delay due to the processing time of a target motion estimator and a manipulator controller. Consequently, the control system shows poor performance and the end-effector sometimes fails to capture the target satellite. To solve this problem, a control system is proposed that utilizes predictive trajectory based on target satellite dynamics. The validity and usefulness of the proposed control method are shown by computer simulations and experiments using a 3-D hardware simulator with 9 degrees of freedom.


Robotica ◽  
2015 ◽  
Vol 34 (12) ◽  
pp. 2689-2728 ◽  
Author(s):  
Feng Han ◽  
Kui Sun ◽  
Yu Liu ◽  
Hong Liu

SUMMARYTwo identical end-effectors are indispensable for self-relocation of a space manipulator, which is an effective way of extending its servicing capability. The prototype design is intimately linked to the requirements. The significant features and functionality of the end-effector and its grapple fixture are described, including the key analysis efforts. The characteristics of the end-effector and their suitability for self-relocation and payload handling were confirmed by testing, which used two prototype end-effectors, a semi-physical simulation testbed system with two, six degrees of freedom (DOF) industrial robot arms, and an air-bearing testbed system with a seven DOF manipulator. The results demonstrate that the end-effector satisfies the requirements and it can work well in a simulated space environment. With the compliance motion of the manipulator, the end-effector can perform soft capture and the manipulator can securely self-relocate and handle the payload.


Robotica ◽  
2015 ◽  
Vol 35 (1) ◽  
pp. 224-240 ◽  
Author(s):  
Salvador Cobos-Guzman ◽  
David Palmer ◽  
Dragos Axinte

SUMMARYThis paper presents a novel kinematic approach for controlling the end-effector of a continuum robot for in-situ repair/inspection in restricted and hazardous environments. Forward and inverse kinematic (IK) models have been developed to control the last segment of the continuum robot for performing multi-axis processing tasks using the last six Degrees of Freedom (DoF). The forward kinematics (FK) is proposed using a combination of Euler angle representation and homogeneous matrices. Due to the redundancy of the system, different constraints are proposed to solve the IK for different cases; therefore, the IK model is solved for bending and direction angles between (−π/2 to +π/2) radians. In addition, a novel method to calculate the Jacobian matrix is proposed for this type of hyper-redundant kinematics. The error between the results calculated using the proposed Jacobian algorithm and using the partial derivative equations of the FK map (with respect to linear and angular velocity) is evaluated. The error between the two models is found to be insignificant, thus, the Jacobian is validated as a method of calculating the IK for six DoF.


Author(s):  
ERWANI MERRY SARTIKA ◽  
RUDI SARJONO ◽  
HAZEL XARIS CHRISOPHRAS

ABSTRAKSistem pick and place merupakan suatu sistem mekanik yang digunakan untuk memanipulasi pergerakan mengangkat, memindahkan, dan meletakkan untuk meringankan kerja manusia. Dalam mempelajari cara kerja robot industri sederhana dibuat miniatur robot pick and place (sederhana). Perancangan yang dibuat yaitu sistem pick and place dengan dua derajat kebebasan dengan ukuran yang memiliki perbandingan 1:0.35 dari referensi ukuran desain robot. Aplikasi SolidWorks digunakan untuk mendesain robot Diamond. Metode Regresi digunakan untuk memprediksi posisi motor servo dalam mencapai posisi yang diinginkan. Metode regresi berhasil digunakan untuk mencari hubungan antara target posisi setpoint dengan posisi motor servo 1 dan 2 (persamaan orde 2 dan 3) untuk mengontrol motor servo. Performansi yang terbaik dari sistem pick and place yang dibuat menggunakan trayektori miring, dengan kecepatan 100 (11.1 rpm), menghasilkan error ± 0.0729 dan presisi 1.63%. Dalam penelitian ini, kecepatan end-effector yang lebih rendah menghasilkan keakurasian dan kepresisian yang lebih baik.Kata kunci: Pick and Place, Robot Diamond, Dua derajat kebebasan, Regresi ABSTRACTThe pick and place system are a mechanic system used in manipulating the movements of lifting, moving, and laying to ease human work. In learning how to work a simple industrial robot, a miniature pick and place robot is created. The design made is a pick and place system with two degrees of freedom with a size that has a ratio of 1: 0.35 from the reference size of the robot design. Regression method is used to predict the position of the servo motor in reaching the desired position. Regression method was successfully used to find the relationship between the target setpoint position and the position of servo motors 1 and 2 (order equations 2 and 3) to control the servo motor. The best performance from the pick and place system that is made using an aslope trajectory, with a speed of 100 (11.1 rpm), produces an error ± 0.0729 and precision 1.63%. In this research, lower end-effector speeds result in better accuracy and precision.Keywords: Pick and Place, Diamond Robot, 2-DOF, Regression


Author(s):  
Oleksandr Stepanenko ◽  
Ilian A. Bonev

In this paper, we present a novel 4-DOF SCARA parallel robot. The 2-DOF portion of the novel robot has been proposed before and consists of an end-effector connected to the base through two legs of type RRR and one passive constraining leg of type RP, where all the base-mounted revolute joints are coaxial. Contrary to SCARA robots based on the four-bar mechanism (RRRRR), the novel robot has a fully cylindrical workspace with no voids or parallel singularities in it. The novel robot has essentially the same workspace as that of a similarly sized ceiling-mounted SCARA serial robot (RR) with links of equal length. However, the proposed robot has the advantage of having all motors mounted on the base. We present the 2-DOF portion of the robot, its kinematic analysis, and its optimal design, and finally propose a mechanism design for the 4-DOF SCARA parallel robot.


Sign in / Sign up

Export Citation Format

Share Document