Performance Analysis of Integrated Collector System with Immersed Coil Heat Exchanger

2014 ◽  
Vol 660 ◽  
pp. 740-744 ◽  
Author(s):  
Lukmon Owolabi Afolabi ◽  
Hussain Hamoud Al-Kayiem ◽  
Tesfamichael Baheta Aklilu

The performance of integrated solar collector / thermal energy storage with immersed heat exchanger was investigated experimentally at the Solar Research Site, University Technology PETRONAS, (4.4224oN, 100.9904oE), Malaysia. The experimental set up consisted of 150 liters storage tank capacity with immersed coil heat exchanger, single glazing 1.5m2 flat plate collector with 15o tilt to the horizontal. The circulation of the working fluid was by forced in closed loop with a mini solar pump. Aluminum cell foam was attached to the absorber as extended surface. The surface of the collector was coated with black ornament to improve its absorption. The system was tested under clear skys, for two cases; with and without water drawn-off for seven days per case studied. The performance evaluation data obtained for case1 at the mean maximum solar intensity was 503.98 W/m2 were: maximum daily water temperature 63°C, average daily water temperature 46°C, collector efficiency 63% and system efficiency 43%. Whilst for case 2, the mean maximum solar intensity was 473.11 W/m2, the maximum daily water temperature 54°C, average daily water temperature 39.36°C, collector efficiency 54% and system efficiency 39%. The system efficiency for case 2 showed that the heat exchanger performed slighlty better and the water drawn-off effect is minimal.

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4010
Author(s):  
Monika Gwadera ◽  
Krzysztof Kupiec

In order to find the temperature field in the ground with a heat exchanger, it is necessary to determine temperature responses of the ground caused by heat sources and the influence of the environment. To determine the latter, a new model of heat transfer in the ground under natural conditions was developed. The heat flux of the evaporation of moisture from the ground was described by the relationship taking into account the annual amount of rainfall. The analytical solution for the equations of this model is presented. Under the conditions for which the calculations were performed, the following data were obtained: the average ground surface temperature Tsm = 10.67 °C, the ground surface temperature amplitude As = 13.88 K, and the phase angle Ps = 0.202 rad. This method makes it possible to easily determine the undisturbed ground temperature at any depth and at any time. This solution was used to find the temperature field in the ground with an installed slinky-coil heat exchanger that consisted of 63 coils. The results of calculations according to the presented model were compared with the results of measurements from the literature. The 3D model for the ground with an installed heat exchanger enables the analysis of the influence of miscellaneous parameters of the process of extracting or supplying heat from/to the ground on its temperature field.


Sign in / Sign up

Export Citation Format

Share Document