Development of Mixed Vertical Axis Wind Turbine (MVAWT) for Low Wind Condition

2014 ◽  
Vol 660 ◽  
pp. 811-815 ◽  
Author(s):  
Bih Lii Chua ◽  
Mohd Suffian Misaran ◽  
Yan Yan Farm ◽  
Mizanur Rahman ◽  
Benjoe Eldana Barahim

Small-scaled renewable energy generation such as micro-hydro and domestic solar panel has become the recent trend of research in order to achieve sustainable energy generation and to eliminate the reliance of geographical selection and large farm area. As for the case of wind energy, a wind turbine that can operate at low wind condition are desirable. This paper presents a mixed design for Vertical Axis Wind Turbine comprises of Savonius and Darrieus rotors, being assembled together as a single rotor turbine. The mixed wind turbine model (MVAWT) was fabricated and tested in our lab as prove of concept. Experiments conducted on 5 MVAWT’s configurations and being compared to a standalone Darrieus turbine with +3 degree pitch angle, showed promising result in lowering the self-start speed of the Darrieus turbine. It was observed that all the positive pitch angle MVAWTs has started to rotate at lower wind speed (about 1.8 m/s) while the standalone Darrieus turbine was only started to rotate at wind speeds more than 3.0 m/s. However, the lower self-start were also being compensated by lower turbine rotational speed. With the low self-start speed in the MVAWT, it will enable the wind energy capture for a longer period of time at a low wind condition site. This development should lead to an interesting research on optimizing the mixture of Savonius and Darrieus turbine for a localized low wind speed conditions in the future.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hashwini Lalchand Thadani ◽  
Fadia Dyni Zaaba ◽  
Muhammad Raimi Mohammad Shahrizal ◽  
Arjun Singh Jaj A. Jaspal Singh Jaj ◽  
Yun Ii Go

PurposeThis paper aims to design an optimum vertical axis wind turbine (VAWT) and assess its techno-economic performance for wind energy harvesting at high-speed railway in Malaysia.Design/methodology/approachThis project adopted AutoCAD and ANSYS modeling tools to design and optimize the blade of the turbine. The site selected has a railway of 30 km with six stops. The vertical turbines are placed 1 m apart from each other considering the optimum tip speed ratio. The power produced and net present value had been analyzed to evaluate its techno-economic viability.FindingsComputational fluid dynamics (CFD) analysis of National Advisory Committee for Aeronautics (NACA) 0020 blade has been carried out. For a turbine with wind speed of 50 m/s and swept area of 8 m2, the power generated is 245 kW. For eight trains that operate for 19 h/day with an interval of 30 min in nonpeak hours and 15 min in peak hours, total energy generated is 66 MWh/day. The average cost saved by the train stations is RM 16.7 mil/year with battery charging capacity of 12 h/day.Originality/valueWind energy harvesting is not commonly used in Malaysia due to its low wind speed ranging from 1.5 to 4.5 m/s. Conventional wind turbine requires a minimum cut-in wind speed of 11 m/s to overcome the inertia and starts generating power. Hence, this paper proposes an optimum design of VAWT to harvest an unconventional untapped wind sources from railway. The research finding complements the alternate energy harvesting technologies which can serve as reference for countries which experienced similar geographic constraints.


Author(s):  
Sandeep S. Wangikar ◽  
Sharad U. Jagtap ◽  
Abhijeet B. Tarmude ◽  
Abhishek S. Pore ◽  
Sushil P. Shinde

Increasing worldwide demand for electricity requires the need for harnessing different kinds of renewable energies like wind energy. An increase in prevalence of vertical axis wind turbine (VAWT) has renewed interest in developing the new configurations of vertical axis wind turbines for better performance. This paper describes the performance analysis of a casement type vertical axis wind turbine (CTVAWT). The model of CTVAWT has been manufactured and tested to predict the performance. The performance analysis of CTVAWT was carried out by varying the control parameters such as wind speed and casement angle. The effect of each control parameter on the response parameters i.e. torque and power have been analyzed (by conducting various experiments of CTVAWT).The torque and power increases with increase in casement angle up to 40 degrees further decrease with increase in casement angle. From this analysis the newly developed CTVAWT is working efficiently at 40 degrees.


2021 ◽  
Vol 926 (1) ◽  
pp. 012093
Author(s):  
Y Kassem ◽  
H Çamur ◽  
M A H A Abdalla ◽  
B D Erdem ◽  
A M R Al-ani

Abstract The grid-connected system can be an attractive solution to reduce electricity consumption, dependence on utility power, and increase electricity generation from renewable energy resources like wind energy for residential electricity users. Based on 33-year wind data (1983-2020), this study investigates the potential of wind energy at different locations ((Akkar, Baalbek, Beirut, Zahlé, Baabda, Nabatieh, Tripoli, and Sidon) in Lebanon using the Weibull distribution function. Monthly NASA wind speed data during the period (1983-2020) were used to estimate the wind energy potential. The result showed that the averaged wind speeds at the selected regions are varied from 3.695m/s to 4.457m/s at the height of 10m. Furthermore, the annual wind power density was estimated at various heights (10m, 30m, and 50m). The results demonstrated that small-scale wind turbines are recommended to be used for generating electricity from wind in the selected regions. Finally, the performance of WRE.060 / 6 kW (vertical axis wind turbine) and Proven WT 6000 (horizontal axis wind turbine) was done based on the monthly NASA wind speed database.


2019 ◽  
Vol 125 ◽  
pp. 14003
Author(s):  
Eflita Yohana ◽  
MSK. Tony Suryo U ◽  
Binawan Luhung ◽  
Mohamad Julian Reza ◽  
M Badruz Zaman

The Wind turbine is a tool used in Wind Energy Conversion System (WECS). The wind turbine produces electricity by converting wind energy into kinetic energy and spinning to produce electricity. Vertical Axis Wind Turbine (VAWT) is designed to produce electricity from winds at low speeds. Vertical wind turbines have 2 types, they are wind turbine Savonius and Darrieus. This research is to know the effect of addition wind booster to Savonius vertical wind turbine with the variation 2 blades and 3 blades. Calculation the power generated by wind turbine using energy analysis method using the concept of the first law of thermodynamics. The result obtained is the highest value of blade power in Savonius wind turbine without wind booster (16.5 ± 1.9) W at wind speed 7 m/s with a tip speed ratio of 1.00 ± 0.01. While wind turbine Savonius with wind booster has the highest power (26.3 ± 1.6) W when the wind speed of 7 m/s with a tip speed ratio of 1.26 ± 0.01. The average value of vertical wind turbine power increases Savonius after wind booster use of 56%.


Author(s):  
Mustafa Kamal ◽  
Fatahul Arifin ◽  
Rusdianasari

Several types of renewable energy have been developed, such as solar energy, biomass, hydro energy, geothermal, and wind energy. Wind energy is an up-and-coming alternative and renewable energy. Wind energy is more environmentally friendly than available energy sources and has more accessible operational and maintenance costs. Indonesia has a relatively small natural wind energy potential because the wind speed in Indonesia is on average 3-6 m/s due to its location. Geographically, it is located in the equatorial area, especially the Muara Enim area, South Sumatra. This study aims to design a prototype the four-blade darrieus type vertical axis wind turbine (VAWT) needed for the utilization of wind energy which is used for Coffee Shop electricity needs at the Jamik Bukit Asam Tanjung Enim Mosque complex, South Sumatra, with the conclusion that the wind turbine, wind turbine rotation, the magnitude of the output voltage and The current generated significantly affects the wind speed in the area.


2020 ◽  
Vol 17 (2) ◽  
pp. 833-839
Author(s):  
Muhamad Fadhli Ramlee ◽  
Ahmad Fazlizan ◽  
Sohif Mat

Among renewable energy resources, wind energy is one of the best alternative for power generation. Recently, vertical axis wind turbine (VAWT) received renewed interest as small-scale wind energy converter due to its suitability for urban application, where the wind condition is known to be unsteady and turbulence. Amongst various type of VAWTs, H-type Darrieus rotor has become more popular, thanks to its simple construction features, resulting to low manufacturing and installation cost. The aim of this paper is to evaluate numerically the power performance of straight-bladed Darrieus VAWT with different turbine solidity using computational fluid dynamic (CFD) technology. A series of two-dimensional CFD simulations of a three-bladed H-type Darrieus rotor were performed with 3 different solidities, σ (0.3, 0.5 and 0.7) to evaluate their power performance. Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations were used to calculate the instantaneous moment coefficient, Cm and power coefficient, Cp over a range of tip speed ratio, λ (0.5–4.5) with a free stream velocity of 8.0 m/s. The simulation results show that high solidity turbine performed well at low values of λ while turbine with low solidity has a wider operating range of λ and performed better at λ > 3.0 due to less blade-wake interactions between upstream and downstream halves of the turbine and lower blockage effect. The findings lend substantially to our understanding of physics flow around blades and turbine in order to optimize the power performance of small scale straight-bladed Darrieus VAWT operating in unsteady and turbulence wind condition.


2013 ◽  
Vol 446-447 ◽  
pp. 704-708 ◽  
Author(s):  
M. Shahrukh Adnan Khan ◽  
Rajprasad K. Rajkumar ◽  
Rajparthiban K. Rajkumar ◽  
C.V. Aravind

This paper focuses on developing an optimal system of Vertical Axis Wind Turbine (VAWT) for low wind speed. After studying the performance analysis of the turbine parameters for speeds less than 5 m/s, a realistic model was designed in Matlab/ Simulink that could produce suitable torque for low wind condition. The Multi-pole Axial Flux Permanent Magnet Synchronous Generator (PMSG) had been proven to be a good choice for this optimal design as it performed well enough to generate sufficient amount of voltage and power. The turbine design parameters such as the radius, height and wind speed were varied to observe the change in generator output voltage and power and based on that an optimal design for Permanent Magnet Synchronous Generator was proposed in this paper. The simulation results were tested with an actual Permanent Magnet Synchronous Generator in laboratory applying the optimized turbine parameters and were compared accordingly for error calculation. Lastly, future possibility of improvement and the limitations had been proposed to develop the system further.


2020 ◽  
Vol 14 (1) ◽  
pp. 120-132
Author(s):  
Li Zheng ◽  
Zhang Wenda ◽  
Han Ruihua ◽  
Tian Yongsheng

Background: The wind turbine is divided into a horizontal axis and a vertical axis depending on the relative positions of the rotating shaft and the ground. The advantage of the choke wind turbine is that the starting torque is large and the starting performance is good. The disadvantage is that the rotation resistance is large, the rotation speed is low, the asymmetric flow occurs when the wind wheel rotates, the lateral thrust is generated, and the wind energy utilization rate is lowered. How to improve the wind energy utilization rate of the resistance wind turbine is an important issue to be solved by the wind power technology. Objective: The nautilus isometric spiral wind turbines studied in this paper have been introduced and analyzed in detail, preparing for the further flow analysis and layout of wind turbines, improving the wind energy utilization rate of wind turbines, introducing patents of other structures and output characteristics of its generator set. Methods: Combined with the flow field analysis of ANSYS CFX software, the numerical simulation of the new wind turbine was carried out, and the aerodynamic performance of the new vertical axis wind turbine was analyzed. The mathematical model and control model of the generator were established by the maximum power control method, and the accuracy of the simulation results was verified by the measured data. Results: The basic parameters of the new wind turbine tip speed ratio, torque coefficient and wind energy utilization coefficient are analyzed. Changes in wind speed, pressure and eddy viscosity were investigated. Three-dimensional distribution results of wake parameters such as wind speed and pressure are obtained. By simulating the natural wind speed, the speed and output current of the generator during normal operation are obtained. Conclusion: By analyzing the wind performance and power generation characteristics of the new wind turbine, the feasibility of the new wind turbine is determined, which provides reference and reference for the optimal design and development of the wind turbine structure.


2017 ◽  
Vol 7 (1.2) ◽  
pp. 246
Author(s):  
Bambang Sugiyono Agus Purwono ◽  
Masroni . ◽  
Awan Setiawan ◽  
Tundung Subali Patma ◽  
Ida Bagus Suardika

The objective of this paper is to simulate the effects upon the wind speed, variation of turbine blades and interaction of wind speed and variation of turbine blades to the power capacity generated by Vertical Axis Wind Turbine (VAWT) using NACA 2412 and to stratify the power capacity generated by the VAWT simulation. The research backgrounds are the wind-energy potential in Indonesia is about 9.290 MW and has already elaborated by Ministry of Mining, and Energy Resources is about 50 MW. This wind energy is environmentally (clean energy), economically (cheapest), easy to operate and easy to maintain, also renewable energy. The method of analysis is quantitative approach using two way classification (analysis of variance or design of experiments). The research variables are wind speed, variation of turbine blades and this interaction among independent variables and the power capacity as dependent variables. Data wind speed simulation vary from 3 m/s till 6 m/s. The quantity of turbine blades vary from 3 till 8 units. The finding from this research is accepted the null hypothesis or not differ significantly at 5% from each independent variable. The scenario and the parameters during the strategy development use turbine blades, wind speed and power generated by VAWT and the maximum power generated is 16.38 watt. The wind speed is 6 m/s and the number of turbine blade is 4 units. However, the minimum power generated by VAWT is 0.45 watt, the wind speed is 6 m/s and the number of turbine blade is 3 units.


Sign in / Sign up

Export Citation Format

Share Document