The Research on the Planning of Distributed PV Systems in Connection with Urban Distribution Network

2014 ◽  
Vol 672-674 ◽  
pp. 94-98
Author(s):  
Jing Wang

For the capacity and the location of the photovoltaic power generation in the urban distribution network, this paper adopts LSI(Loss sensitivity index) to determine the access to the location of photovoltaic power generation system. At the same time, we put forward a kind of multi-objective programming methods for the distribution network, which adopts three sorts of indices including LOI(Loss optimization index), EOI(Environmental optimization index) and VQI (Voltage quality index) as a multi-objective function. Therefore, an auxiliary search space is built in this paper to improve BPSO(binary particle swarm algorithm), in order to solve the complicated nonlinear optimization problem. And through the simulation verification IEEE-30, the simulation results show that this method can realize the optimization of distribution network system configuration.

2014 ◽  
Vol 672-674 ◽  
pp. 956-960
Author(s):  
Ke Huang ◽  
Xin Wang ◽  
Yi Hui Zheng ◽  
Li Xue Li ◽  
Yan Ling Liu

To analyze the influence of distribution network with grid-connected photovoltaic (PV) generation on the power supply reliability, in this paper it firstly regards interconnected PV generation as an equivalent generator with rated capacity as well as the island operation mode of PV to set up a model for reliability calculation and analysis. Based on the network equivalent method, the structure of distribution system with PV is simplified and then the reliability indexes of distribution system are worked out based on Failure Mode and Effects Analysis (FMEA). At last, a comparative calculation between the distribution network with incorporated PV generations and that without PV generations is made. After analyzing a real example, the results suggest that integrating PV power generations reasonably into the distribution network can enhance the reliability of whole distribution system.


Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1159 ◽  
Author(s):  
Lianzhou Wu ◽  
Tao Bai ◽  
Qiang Huang ◽  
Jian Wei ◽  
Xia Liu

It is important to investigate the laws of reservoir multi-objective optimization operations, because it can obtain the best benefits from inter-basin water transfer projects to mitigate water shortage in intake areas. Given the multifaceted demands of the Hanjiang to Wei River Water Diversion Project, China (referred hereafter as “the Project”), an easy-to-operate multi-objective optimal model based on simulation is built and applied to search the multi-objective optimization operation rules between power generation and energy consumption. The Project includes two reservoirs connected by a water transfer tunnel. One is Huangjinxia, located in the mainstream of Hanjiang with abundant inflow but no regulation ability, and the other is Sanhekou, located in the tributary of Hanjiang with multi-year regulation ability but less water. The layout of the Project increases the difficulty of reservoir joint optimization operations. Therefore, an improved Non-dominated Sorting Genetic Algorithm-II (I-NSGA-II) with a feasible search space is proposed to solve the model based on long-term series data. The results show that: (1) The validated simulation model is helpful to obtain Pareto front curves to reveal the rules between power generation and energy consumption. (2) Choosing a reasonable search step size to build a feasible search space based on simulation results for the I-NSGA-II can help find more optimized solutions. Considering the influence of the initial populations of the algorithm and limited computing ability of computers, the qualified rate of Pareto points solved by I-NSGA-II are superior to NSGA-II. (3) According to the characteristics of the Project, water transfer ratio threshold value of two reservoirs are quantified for maximize economic benefits. Moreover, the flood season is a critical operation period for the Project, in which both reservoirs should supply more water to intake areas to ensure the energy balanced of the entire system. The findings provide an easy-to-operate multi-objective operation model with the I-NSGA-II that can easily be applied in optimal management of inter-basin water transfer projects by relevant authorities.


2014 ◽  
Vol 953-954 ◽  
pp. 61-65
Author(s):  
Jing Chao Zhang ◽  
Zheng Gang Wang ◽  
Feng Zhen Zhou ◽  
Ning Xi Song ◽  
Qian Wang

In recent years, with the gradual depletion of traditional energy, as renewable energy representatives, new energy has developed rapidly. We know that distributed photovoltaic power generation with clean, pollution-free, easy installation, and therefore has been rapid development. However, the large number of distributed photovoltaic power generation connected to the distribution network would have a negative impact on the grid with a safe and reliable operation because of its randomness and volatility intrinsic properties. In this paper, in terms of power flow, voltage distribution, load characteristics, power quality, system protection and reliability departure, through MATLAB simulation analysis, the distribution network transformation strategies of primary and secondary devices has been proposed. It laid an important foundation for renewable energy development and the Third Industrial Revolution.


Sign in / Sign up

Export Citation Format

Share Document