Experimentation of Steel Fiber Reinforced Concrete Tri-Axial Split Strength under Quasi-Static Loading and High Strain-Rate

2011 ◽  
Vol 70 ◽  
pp. 189-194
Author(s):  
Jia Qu ◽  
Guang Ping Zou ◽  
Pei Xiu Xia

A split tensile test methodology has been established for the concrete spheriform specimens with the principal stress ratio of σ1:σ2:σ3=0.24:0.24:-1 in order to study the tensile-tensile-compressive tri-axial strength. Using a Universal Material Testing Machine and Split Hopkinson Pressure Bar, the quasi-static and dynamic spliting tensile tests have been conducted for the concrete spheriform specimens consisting of 1% steel fiber. In the quasi-static test, the average strain rate of the steel fiber reinforced concrete specimens was 8.3×10-5s-1and the split tensile strength was found to be 0.77MPa, which is consistent with the existing literature. In the high strain rate tests, the average strain rate was 170s-1and the split tensile strength was found to be 1.01MPa. When compared with the quasi-static testing results, it is seen that the split tensile strength of the steel fiber reinforced concrete increases with increasing strain rate. The split tensile test methodology established in the present paper is simple and inexpensive, while the strength obtained located on the meridian plane of tension and compression, has practical significance.

2011 ◽  
Vol 71-78 ◽  
pp. 1083-1089
Author(s):  
Zhang Luo

Extensive experimental research has been done on rate-dependent properties normal concrete, but very little on the tensile properties of steel fiber reinforced concrete (SFRC). In this article, based on a high-speed Instron servo-controlled hydraulic materials test machine is adopted to investigate the strain rate-dependent properties of bending tensile properties for SFRC. The scheme of experiment, the works of specimens fabricating and the processes of both loading and measuring were introduced. A total of 30 beam specimens are tested. The steel fiber content is varied: 0%, 1.0%, 2.0%, 3.0% and 4.0% by volume. The experimental results were analyzed. The emphasis is put on the study of the flexural strength changes of SFRC under different strain rates. It is discovered that, with the improvement of the strain rate, increasing strength of SFRC is very obvious. While the strain rate increases from 1.4×10-4s-1 to 0.53×10-4s-1, the flexural strength increasing around 30%.


2012 ◽  
Vol 204-208 ◽  
pp. 3740-3743
Author(s):  
Wen Cui ◽  
Qin Luo

Mix design of the steel fiber reinforced concrete was analyzed based on the engineering conditions. It was indicated by comparing with the strength values of steel fiber reinforced concrete (CF40) and ordinary concrete (C40) that the tensile strength of the steel fiber reinforced concrete increased about 70%, the compressive strength increased about 10%, the initial cracking strength increased about 150%.The reasonable construction technologies were used in mixing, transportation, pouring, vibrating and curing of the steel fiber reinforced concrete in order to ensure quality of the construction.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 251
Author(s):  
Xinxin Ding ◽  
Changyong Li ◽  
Minglei Zhao ◽  
Jie Li ◽  
Haibin Geng ◽  
...  

Due to the mechanical properties related closely to the distribution of steel fibers in concrete matrix, the assessment of tensile strength of self-compacting steel fiber reinforced concrete (SFRC) is significant for the engineering application. In this paper, seven groups of self-compacting SFRC were produced with the mix proportion designed by using the steel fiber-aggregates skeleton packing test method. The hooked-end steel fibers with length of 25.1 mm, 29.8 mm and 34.8 mm were used, and the volume fraction varied from 0.4% to 1.4%. The axial tensile test of notched sectional prism specimen and the splitting tensile test of cube specimen were carried out. Results show that the axial tensile strength was higher than the splitting tensile strength for the same self-compacting SFRC, the axial tensile work and toughness was not related to the length of steel fiber. Finally, the equations for the prediction of tensile strength of self-compacting SFRC are proposed considering the fiber distribution and fiber factor, and the adaptability of splitting tensile test for self-compacting SFRC is discussed.


Sign in / Sign up

Export Citation Format

Share Document