Multi-Objective Optimization of a Two-Disk Rotor System

2014 ◽  
Vol 705 ◽  
pp. 79-82
Author(s):  
Jing Jing Huang ◽  
Long Xi Zheng ◽  
Mei Qing

A two-disk rotor system under the aero-engine support structure of typical 1-0-1 was established and the dynamical characteristics were analyzed. The two-disk rotor model was integrated to the Isight. The multi-objective design optimization of the transient process was then carried out with Evolutionary Optimization Algorithm. The optimum positions of the two-disk rotor system were obtained at the specified constraints. In order to verify the validity of the design optimization, the transient test was carried out on a high-speed flexible rotor mockup. The maximum amplitude of disk 1 cross the first critical rotation speed fell 50% and the maximum amplitude of disk 2 decreased by 20%. Experimental results indicated that the optimization method could obtain the position of the flexible rotor with the minimum amplitude and improve the design efficiency and quality, which had practical significance in the design of aero-engine rotor system.

2019 ◽  
Vol 36 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Jingjing Huang ◽  
Longxi Zheng ◽  
Chris K Mechefske ◽  
Bingbing Han

Abstract Based on rotor dynamics theory, a two-disk flexible rotor system representing an aero-engine with freely supported structure was established with commercial software ANSYS. The physical model of the two-disk rotor system was then integrated to the multidisciplinary design optimization software ISIGHT and the maximum vibration amplitudes experienced by the two disks when crossing the first critical speed were optimized using a multi-island genetic algorithm (MIGA). The optimization objective was to minimize the vibration amplitudes of the two disks when crossing the first critical speed. The position of disk 1 was selected as the optimization variable. The optimum position of disk 1 was obtained at the specified constraint that the variation of the first critical speed could not exceed the range of ±10 %. In order to validate the performance of the optimization design, the proof-of-transient experiments were conducted based on a high-speed flexible two-disk rotor system. Experimental results indicated that the maximum vibration amplitude of disk 1 when crossing the first critical speed declined by 60.9 % and the maximum vibration amplitude of disk 2 fell by 63.48 % after optimization. The optimization method found the optimum rotor positions of the flexible rotor system which resulted in minimum vibration amplitudes.


Author(s):  
Shibing Liu ◽  
Bingen Yang

Flexible multistage rotor systems have a variety of engineering applications. Vibration optimization is important to the improvement of performance and reliability for this type of rotor systems. Filling a technical gap in the literature, this paper presents a virtual bearing method for optimal bearing placement that minimizes the vibration amplitude of a flexible rotor system with a minimum number of bearings. In the development, a distributed transfer function formulation is used to define the optimization problem. Solution of the optimization problem by a real-coded genetic algorithm yields the locations and dynamic coefficients of bearings, by which the prescribed operational requirements for the rotor system are satisfied. A numerical example shows that the proposed optimization method is efficient and accurate, and is useful in preliminary design of a new rotor system with the number of bearings unforeknown.


Author(s):  
Joseph Shibu Kalloor ◽  
Ch. Kanna Babu ◽  
Girish K. Degaonkar ◽  
K. Shankar

A comprehensive multi-objective optimisation methodology is presented and applied to a practical aero engine rotor system. A variant of Nondominated Sorting Genetic Algorithm (NSGA) is employed to simultaneously minimise the weight and unbalance response of the rotor system with restriction imposed on critical speed. Rayleigh beam is used in Finite Element Method (FEM) implemented in-house developed MATLAB code for analysis. The results of practical interest are achieved through bearing-pedestal model and eigenvalue based Rayleigh damping model. Pareto optimal solutions generated and best solution selected with the help of response surface approximation of the Pareto optimal front. The outcome of the paper is a minimum weight and minimum unbalance response rotor system which satisfied the critical speed constraints.


2019 ◽  
Vol 9 (17) ◽  
pp. 3628 ◽  
Author(s):  
Liang Ma ◽  
Jun Wang ◽  
Guichang Zhang

As an important part of the turbomachinery, the rotor–bearing system has been upgraded to provide a high rotating speed in order to meet the demand of high power production. With increasing demand for stability, the squeeze film damper (SFD) has been widely used in industrial machinery because it can reduce the vibration amplitude and suppress the external force. Usually, it shows inadaptability under the different working conditions where the SFD parameters didn’t change appropriately. Therefore, the reasonable choice of operational parameters of SFD is the key solution that can provide viscous damping effectively and restrain the nonlinear vibration generated by faults. In this paper, the mathematical model of a rotor-ball bearing-SFD system considering the misalignment fault and misalignment-rubbing coupling fault is built first. Then the dynamic characteristics under typical working conditions (ω = 1000 rad/s) of the faulted rotor are discussed. The vibration attenuation effects of the SFD parameters selected by using the multi-objective optimization method on the dynamic responses are analyzed. The results show that when the rotor system operates under different states, the value and the sensitivity of optimization parameters are altered. With no fault, the amplitude of fundamental frequency decrease 23%. With the misalignment fault, the amplitude of the fundamental frequency decreases by 43.4%, the amplitude of 2× fundamental frequency decreases by 27.5%, and the amplitude of 3× fundamental frequency decreases by 66.7%. With the misalignment-rubbing coupling fault, the amplitude of fundamental frequency reduces by 7.4%, the amplitude of 2× fundamental frequency drops by 51.5%, and the amplitude of 3× fundamental frequency drops by 16.8%. Overall, the feasibility of the optimization method of the variable-structured SFD operational parameters for the faulted rotor system is verified. These parametric analyses are very helpful in the development of a high-speed rotor system and provide a theoretical reference for the vibration control and optimal design of rotating machinery.


2012 ◽  
Vol 184-185 ◽  
pp. 316-319
Author(s):  
Liang Bo Ao ◽  
Lei Li ◽  
Yuan Sheng Li ◽  
Zhi Xun Wen ◽  
Zhu Feng Yue

The multi-objective design optimization of cooling turbine blade is studied using Kriging model. The optimization model is created, with the diameter of pin fin at the trailing edge of cooling turbine blade and the location, width, height of rib as design variable, the blade body temperature, flow resistance loss and aerodynamic efficiency as optimization object. The sample points are selected using Latin hypercube sampling technique, and the approximate model is created using Kriging method, the set of Pareto-optimal solutions of optimization objects is obtained by the multi-object optimization model using elitist non-dominated sorting genetic algorithm (NSGA-Ⅱ) based on the approximate model. The result shows that the conflict among all optimization objects is solved effectively and the feasibility of the optimization method is improved.


Sign in / Sign up

Export Citation Format

Share Document