Nonlinear Dynamics of Shrouded Turbine Blade System with Impact and Friction

2014 ◽  
Vol 706 ◽  
pp. 81-92 ◽  
Author(s):  
B. Santhosh ◽  
S. Narayanan ◽  
C. Padmanabhan

Dry friction dampers are passive devices used to reduce the resonant vibration amplitudes in turbine bladed systems. In shrouded turbine blade systems, in addition to the stick- slip motion induced by dry friction during the contact state in the tangential direction, the interface also undergoes intermittent separation in the normal direction. The problem can thus be treated as a combination of impact and friction. In this work, the dynamics of dry friction damped oscillators which are representative models of dry friction damped bladed system is investigated. A one dimensional contact model which is capable of modeling the interface under constant and variable normal load is used. The steady state periodic solutions are obtained by multi - harmonic balance method (MHBM). Frequency response plots are generated for different values of normal load using the arc length continuation procedure. The MHBM solutions are validated using numerical integration. A single degree of freedom (dof) model under constant normal load with constant and variable friction coefficients, a dry friction damped two dof system under constant normal load and a two dof system under variable normal load are investigated. In the presence of variable normal load, the system shows multivalued frequency response and jump phenomenon. The optimal value of the normal load which gives minimum resonant response is also obtained.

Author(s):  
Yaguang Wu ◽  
Yu Fan ◽  
Lin Li ◽  
Zhimei Zhao

Abstract This paper proposes a flexible dry friction plate to mitigate the vibration of thin-walled structures for one resonance crossing. Based on a cantilever beam-friction damper finite element model, the geometry and material parameters of the friction plate are optimized numerically through steady-state response analyses by the widely-used Multi-Harmonic Balance Method (MHBM). In order to further improve the damping effect, piezoelectric material is distributed to the flexible damper, and two types of dry friction and piezoelectric hybrid dampers are explored, namely semi-active and passive, respectively. For semi-active hybrid dampers, piezoelectric material is used as an actuator to adjust the normal load applied to the friction interface in real time, so that the friction damping is improved. For passive ones, piezoelectric material is used as a transducer, which dissipates the strain energy stored in the wavy plate by the shunting circuit, additional shunted piezoelectric damping contributes to the total output damping accordingly. Better damping effect compared with the friction baseline is realized for the two types ideally. This damping module has a simple structure and avoids the problem of installation and maintenance of piezoelectric material which is generally bonded to the host structure. Technical challenges are: the semi-active type requires excessive voltage applied to the piezoelectric actuator, while the passive one needs to connect a programmable synthetic circuit.


Author(s):  
B. D. Yang ◽  
J. J. Chen ◽  
C. H. Menq

In this paper, the 3D shroud contact kinematics of a shrouded blade system is studied. The assumed blade motion has three components, namely axial, tangential, and radial components, which result in a three dimensional relative motion across the shroud interface. The resulting relative motion can be decomposed into two components. The first one is on the contact plane and can induce stick-slip friction. The other component is perpendicular to the contact plane and can cause variation of the contact normal load and, in extreme circumstances, separation of the two contacting surfaces. In order to estimate the equivalent stiffness and damping of the shroud contact an approach is proposed. In this approach, the in-plane slip motion is assumed to be elliptical and is decomposed into two linear motions along the principal major and minor axes of the ellipse. A variable normal load friction force model (Yang and Menq, 1996) is then applied separately to each individual linear motion, and the equivalent stiffness and damping of the shroud contact can be approximately estimated. With the estimated stiffness and damping, the developed shroud contact model is applied to the prediction of the resonant response of a shrouded blade system. The effects of two different shroud constraint conditions, namely 2D constraint and 3D constraint, on the resonant response of a shrouded blade system are compared and the results are discussed.


2021 ◽  
Author(s):  
Y. G. Wu ◽  
Y. Fan ◽  
L. Li ◽  
Z. M. Zhao

Abstract This paper proposes a flexible dry friction plate to mitigate the vibration of thin-walled structures for one resonance crossing. Based on a cantilever beam-friction damper finite element model, the geometry and material parameters of the friction plate are optimized numerically through steady-state response analyses by the widely-used Multi-Harmonic Balance Method (MHB-M). In order to further improve the damping effect, piezoelectric material is distributed to the flexible damper, and two types of dry friction and piezoelectric hybrid dampers are explored, namely semi-active and passive, respectively. For semi-active hybrid dampers, piezoelectric material is used as an actuator to adjust the normal load applied to the friction interface in real time, so that the friction damping is improved. For passive ones, piezoelectric material is used as a transducer, which dissipates the strain energy stored in the wave-like plate by the shunting circuit, additional shunted piezoelectric damping contributes to the total output damping accordingly. Better damping effect compared with the friction baseline is realized for the two types ideally. This damping module has a simple structure and avoids the problem of installation and maintenance of piezoelectric material which is generally bonded to the host structure. Technical challenges are: the semi-active type requires excessive voltage applied to the piezoelectric actuator, while the passive one needs to connect a programmable synthetic circuit.


2011 ◽  
Vol 243-249 ◽  
pp. 5450-5457 ◽  
Author(s):  
Li Qin ◽  
Wei Ming Yan ◽  
Sheng Bo Guo

The paper proposes a new variable friction system, of which the friction force can increase linearly with the displacement of system. This new system can be used in TMD to avoid the disadvantage of Coulomb friction TMD. Using first order harmonic balance method, the equivalent damping ratio and frequency of SDOF variable friction system is deduced and analyzed. The frequency response characteristics of SDOF variable friction system is discussed. The control effectiveness of variable friction TMD under harmonic excitation is analyzed theoretically. The results demonstrate that the frequency response curves of variable friction TMD and classically damped TMD are similar and both can effectively reduce structural response under harmonic excitation.


Turbine blade dampers are small elements of a parabolic configuration usually fabricated from sheet steel. They are positioned loosely between the roots of turbine blades improving the damping of blade vibrations by generating dry friction from the relative motion of blades and damper. This paper presents a theoretical approach to these stick-slip vibrations and compares theory with measurements. Additionally, some design aspects of such dampers are discussed by considering the damping behaviour in relation to important design parameters.


2007 ◽  
Vol 130 (1) ◽  
Author(s):  
Farong Zhu ◽  
Robert G. Parker

A model of dry friction tensioner in a belt-pulley system considering transverse belt vibration is developed, and the influence of the dry friction on the system dynamics is examined. The discretized formulation is divided into a linear subsystem including linear coordinates and a nonlinear subsystem addressing tensioner arm vibration, which reduces the dimension of the iteration matrices when employing the harmonic balance method. The Coulomb damping at the tensioner arm pivot mitigates the tensioner arm vibration but not necessarily the vibrations of other system components. The extent of the mitigation varies for different excitation frequency ranges. The critical amplitude of the dry friction torque beyond which the system operates with a locked arm is determined analytically. Superharmonic resonances are observed in the responses of the generalized span coordinates, but their amplitudes are small. The energy dissipation at the tensioner arm hub is discussed, and the stick-slip phenomena of the arm are reflected in the velocity reversals near the arm extreme location. Dependence of the span tension fluctuations on Coulomb torque is explored.


Author(s):  
Farong Zhu ◽  
Robert G. Parker

A model of dry friction tensioner in a belt-pulley system considering transverse belt vibration is developed, and the influence of the dry friction on the system dynamics is examined. The discretized formulation is divided into a linear subsystem including linear coordinates and a nonlinear subsystem addressing tensioner arm vibration, which reduces the dimension of the iteration matrices when employing the harmonic balance method. The Coulomb damping at the tensioner arm pivot mitigates the tensioner arm vibration but not necessarily the vibrations of other system components. The extent of the mitigation varies for different excitation frequency ranges. The critical amplitude of the dry friction torque beyond which the system operates with a locked arm is determined analytically. Superharmonic resonances are observed in the responses of the generalized span coordinates but their amplitudes are small. The energy dissipation at the tensioner arm hub is discussed, and the stick-slip phenomena of the arm are reflected in the velocity reversals near the arm extreme location. Dependence of the span tension fluctuations on Coulomb torque is explored.


1999 ◽  
Vol 121 (3) ◽  
pp. 523-529 ◽  
Author(s):  
B. D. Yang ◽  
J. J. Chen ◽  
C. H. Menq

In this paper, the three-dimensional shroud contact kinematics of a shrouded blade system is studied. The assumed blade motion has three components, namely axial, tangential, and radial components, which result in a three dimensional relative motion across the shroud interface. The resulting relative motion can be decomposed into two components. The first one is on the contact plane and can induce stick-slip friction. The other component is perpendicular to the contact plane and can cause variation of the contact normal load and, in extreme circumstances, separation of the two contacting surfaces. In order to estimate the equivalent stiffness and damping of the shroud contact an approach is proposed. In this approach, the in-plane slip motion is assumed to be elliptical and is decomposed into two linear motions along the principal major and minor axes of the ellipse. A variable normal load friction force model (Yang and Menq, 1996) is then applied separately to each individual linear motion, and the equivalent stiffness and damping of the shroud contact can be approximately estimated. With the estimated stiffness and damping, the developed shroud contact model is applied to the prediction of the resonant response of a shrouded blade system. The effects of two different shroud constraint conditions, namely two-dimensional constraint and three-dimensional constraint, on the resonant response of a shrouded blade system are compared and the results are discussed.


Sign in / Sign up

Export Citation Format

Share Document