Calculation of Shrinkage-Creep Analysis for Long-Span Concrete Continuous Rigid Frame Bridge

2011 ◽  
Vol 71-78 ◽  
pp. 1511-1515
Author(s):  
Can Bin Yin ◽  
Fang Yu

Take Longtan river super large bridge as example,establishing finite element model with Bridge Doctor to analysis the influence shrinkage and creep.The deformation prediction of the bridge in the construction process and after completion was made based onseveral.Each prediction results were analyzed and compared.


2013 ◽  
Vol 671-674 ◽  
pp. 1012-1015
Author(s):  
Zhao Ning Zhang ◽  
Ke Xing Li

Due to the environment, climate, loads and other factors, the pre-stress applied to the beam is not a constant. It is important for engineers to track the state of the pre-stress in order to ensure security of the bridge in service. To solve the problem mentioned above, the paper puts forward a new way to analyze the effective pre-stress using the displacement inversion method based on the inversion theory according to the measured vertical deflection of the bridge in service at different time. The method is a feasible way to predict the effective pre-stress of the bridge in service. Lastly, taking the pre-stressed concrete continuous rigid frame bridge for example, the effective pre-stress is analyzed by establishing the finite element model.



2013 ◽  
Vol 351-352 ◽  
pp. 1108-1111
Author(s):  
Zhao Ning Zhang

Due to the shrinkage, creep, friction and other factors, the pre-stress applied to the beam is not a constant. It is important to obtain the information of the pre-stress in order to ensure security of the bridge in service. To solve the problem mentioned above, the paper puts forward a new way to analyze the effective pre-stress using the displacement inversion method based on the inversion theory according to the measured vertical deflection of the bridge in service at different time. The method is a feasible way to predict the effective pre-stress of the bridge in service. Lastly, taking the pre-stressed concrete continuous rigid frame bridge for example, the effective pre-stress and stiffness are analyzed by establishing the finite element model.



2014 ◽  
Vol 1030-1032 ◽  
pp. 750-753
Author(s):  
Hua Su

Accurate simulation of construction process of continuous rigid frame bridge is a foundation to make a bridge built accurately. Based on the suit iteration method, this paper used MIDAS to built a 3D finite elements model, the internal force and deformation results of each construction stage was obtained. This study provided a good theoretical reference for the control of long-span continuous rigid frame bridge construction..



2011 ◽  
Vol 255-260 ◽  
pp. 821-825 ◽  
Author(s):  
Yun Bo Zhang ◽  
Da Peng Liu

In the design of continuous rigid frame bridge setting reasonable pre-camber can eliminate the impact of various loads on the linear in construction process, reduce shrinkage and creep in the process of post-operation, the late loss of pre-stressed, deformation produced by live load and so on ,resulting in deflection phenomenon. Based on the current specifications of the continuous rigid frame bridge camber setting methods, this thesis proposes the reasonable setting suggestions of pre-camber and sets examples to illustrate this.



Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1229
Author(s):  
Gang Yao ◽  
Chaoyu Wu ◽  
Yang Yang

A structure does not reach a stable state during the construction process, and hence its structural reliability is low. In order to ensure the safety of the construction process and final structural quality, it is necessary to analyze the safety and structural mechanical properties of large-span space steel structures during the construction process. Based on the engineering background of the polyline symmetrical large-span steel structure construction process, this research established a finite element model of the large-span steel structure on an ANSYS platform. The correctness of the model was verified by comparing the measured frequency of the large-span steel structure with the frequency calculated in the finite element model. Based on the life-death element method, the internal force and deformation response characteristics of the large-span steel structure in the construction process were analyzed, and the different effects of the on-time completion and step-by-step construction on the performance of the broken-line large-span steel structure were compared and analyzed. The study found that the long-span steel truss structure is more sensitive to the construction process, and the final forming state is greatly affected by the construction process. The construction sequence is different, and the structure process and size and distribution of the final stress and deformation are also different. The analysis result of the construction process is closer to that of the actual project. Therefore, appropriate construction paths should be used in the construction process to reduce the impact of path effects on structural performance. It is recommended to pay more attention to the displacement and stress response of the truss when it encounters similar a symmetrical long-span steel structure truss in-place of the forming construction.



2010 ◽  
Vol 163-167 ◽  
pp. 1500-1504 ◽  
Author(s):  
Heng Bin Zheng ◽  
Xiao Lin Yu ◽  
Jun Liang Hu ◽  
Quan Sheng Yan

The excessive long-term deflections of a long span continuous girder bridge may induce vehicles to move unsafely and hazard to the bridge operation, thus to limit the development of this bridge type. In this paper the main parameters influencing the long-term deflections of a continuous rigid-frame bridge, such as pre-stressed losses, mass distribution of the box girder and Young’s modules of concrete etc., were investigated. With the establishment of the finite element model of a real bridge and the premise of describing mechanism of each parameter, detailed parameter sensitivity analysis of long-term deflections were carried out with numerical simulation method. The results of this study may help to understand the main mechanism about the long-term deflection of continuous rigid-frame bridge and provide some reference for the wide use of this type of bridges.



2015 ◽  
Vol 9 (1) ◽  
pp. 1028-1034
Author(s):  
Hu Wang ◽  
Fei Han

Through the analysis and summary of research status and development trends of deck pavement technology of long-span continuous rigid frame bridge deck pavement at home and abroad, the impact factors of durability of continuous rigid frame bridge deck pavement, such as design flaw, constructional quality and overload are studied. This article will comprehensively analyze the cause of disease focusing on mechanism, structure design deficiency and classification method. Analysis shows that: the durability of continuous rigid frame bridge deck pavement is determined not only by pavement material strength, but also by pavement layer thickness and materials of bridge deck. It is integrated design of pavement and bridge deck, superior construction quality and craft that make sure deck pavement durability. Besides, there are still some imperfections and unreasonableness in existing literatures using finite element calculation of continuous rigid frame bridge deck pavement. In order to provide more credible data for future engineering practice and relevant standard, the finite element method and boundary conditions should be studied and improved.



2014 ◽  
Vol 1065-1069 ◽  
pp. 902-907
Author(s):  
Lou He ◽  
He Ping Hu ◽  
Chang Qing Guo

The dynamic characteristics of Tukan Wujiang Bridge are analyzed numerically. The bridge, which is still under construction, is a continuous rigid frame bridge with high-piers and long-span in Wulong County, Chongqing, China. A spatial finite element model is established for the bridge with the finite element software ABAQUS. The natural vibration characteristics and effective modal participation mass of the bridge in the built-up case is obtained. The variation of dynamic characteristics of continuous rigid frame bridge subjected to the dynamic earthquake loading is studied, and the number of modes necessary to the vibration mode combination when applying the response spectrum method under the earthquake is obtained. In addition, the seismic response of the bridge is analyzed with both the response spectrum method and the time-history method, and the maximum response of structure under various probability of earthquake is obtained. The results of the two methods are compared. The comprehensive seismic performance of the bridge is analyzed and evaluated. The results show that the seismic performance of the rigid frame bridge satisfies the expected design performance.



2013 ◽  
Vol 361-363 ◽  
pp. 1228-1231
Author(s):  
Wan Quan Tong

Prestressed concrete continuous rigid frame bridge has the advantages of no expansion joints, smooth driving the advantages,however, due to cross under serious scratch,seriously affect the service life of the bridge.Take a Large span asymmetric continuous rigid frame bridge of Guizhou as engineering background,use finite element Program Midas/Civil modeling,carried out Analysis of the construction process,And select a reasonable way to Set the bridge pre-camber,and provide reasonable data for the construction of control,to ensure the bridge structure linear reasonable.



Sign in / Sign up

Export Citation Format

Share Document