Study on Electrochemical Degradation of Acid Scarlet 3R

2011 ◽  
Vol 71-78 ◽  
pp. 3071-3074
Author(s):  
Jun Sheng Hu ◽  
Yue Li ◽  
Zhuo Wang

Based on a static experiment, this study researched the electrochemical oxidation process of simulated dye wastewater containing Acid Scarlet 3R in the two-dimensional electrolysing cell. This experiment investigated the effect of such various factors as current density, initial concentration, supporting electrolyte concentration, and the initial pH value on the color removal. The results of the experiment clearly indicated that the rate of color removal increased when the current density was increasing gradually; it decreased when the initial concentration was increasing; it originally increased and then decreased when concentration of electrolytes was increasing; alkaline condition was not conducive to the removal of color, and the effect of decolorization was better under an acid condition than under an alkaline condition. The optimum condition of disposing of dye wastewater is when the current density is 7Am/cm², electrolyte concentration is 0.04mol/L, pH=2.5, under the condition of which the color removal rate could be 96.06%.

2012 ◽  
Vol 178-181 ◽  
pp. 557-561
Author(s):  
Jun Sheng Hu ◽  
Jia Li Dong ◽  
Ying Wang ◽  
Xue Dong Ren

In diaphragm cell, by using the porous graphite as anode, ACF as the cathode, acid scarlet 3R as simulated wastewater, the experiment researched into the effect of current density, electrolyte concentration, aeration rate and the initial pH value on the color removal of wastewater. The results show that the decolourization efficiency increased gradually when the applied current density increases, but the trend will slow down when current density exceeds a certain value. The decolourization efficiency is proved to be first increases then decreases with increased electrolyte concentration and aeration rate, both excessively high and low electrolyte concentration are unfavorable to the removal of wastewater, however the aeration effect is smaller. The effect on decolorization is greater in acid condition than in alkaline condition. As the diaphragm, electrolyzer resistance increase, its average decolourization efficiency is lower than without diaphragm cell, and the decolourization efficiency of cathode area is significantly higher than the anode area.


2012 ◽  
Vol 518-523 ◽  
pp. 2539-2542 ◽  
Author(s):  
Jun Sheng Hu ◽  
Jia Li Dong ◽  
Ying Wang ◽  
Lei Guan ◽  
Ying Yong Duan

By the static experiment, we studied the electrochemical oxidation process of simulated hydroquinone wastewater (concentration for 300mg•L-1) in the three-dimensional cell. Experimental inspected how various factors of the packing quality ratio, electrolysis voltage, supporting electrolyte concentration, and the initial pH value influence the effect of the removal of hydroquinone and CODCr. The results of the experiment clearly indicated with the increase of voltage applied the removal rate of hydroquinone and CODCr increased first and then decreased, finally and increased again. In the weak alkali conditions (pH=8.5), the removal rate of hydroquinone and CODCr is the highest, Electrolyte concentration and packing quality ratio to the effect of hydroquinone by electrochemical degradation is the larger. The results of the single factor analysis show that the most suitable processing conditions of simulated hydroquinone wastewater by bipolar electrocatalysis oxidation are the Na2SO4 concentration of 0.03mol•L-1, the electrolytic voltage of 6V, the initial pH value of 8.5, the packing quality ratio of 1:2. With this condition processing 3h, the removal rate of hydroquinone and CODCr reached 83.96% and 39.9%, respectively.


2013 ◽  
Vol 295-298 ◽  
pp. 1258-1262
Author(s):  
Jun Sheng Hu ◽  
Lei Guan ◽  
Jia Li Dong ◽  
Ying Wang ◽  
Ying Yong Duan

Using electrochemical oxidation method treats the acid red 3R simulation wastewater, investigates the influence of current density, electrolyte concentration, pH-value and aeration and their interaction on the removal rate of chroma. Through the design of Box-Benhnken Design(BBD) and the response surface analysis, the influence sequence of all variables is current density > aeration > electrolyte concentration > pH-value, the influence sequence of all interaction is electrolyte concentration-aeration > current density-aeration ,electrolyte concentration-pH value > current density-pH value > pH value-aeration > current density-electrolyte concentration. Ultimately, the optimal value is 98.4915% under the condition of current density of 6.51mA/cm2,electrolyte concentration of 0.04mol/L,pH-value of 4.17 and aeration of 0.24m3/h.


2019 ◽  
Vol 19 (11) ◽  
pp. 7308-7314
Author(s):  
Jinyan Li ◽  
Qingsong Guan ◽  
Junming Hong ◽  
Chang-Tang Chang

Composite electrodes with different graphene (GN)/TiO2 ratios and nano-activated carbon electrodes were prepared for electrocatalytic performance comparison. The electrodes were loaded with platinum (Pt) by use of chloroplatinic acid to promote their performance. Reactive Black 5 (RBk5) dye wastewater was treated as a challenging pollutant by use of advanced electrochemical oxidation technology. The composite materials were characterized by Transmission Electron Microscope (TEM), Field Emission Scanning Electron Microscopy (FE-SEM), and Energy Disperse Spectroscopy (EDS). Results showed that the graphene electrode was prepared successfully and verified because all elements were uniformly loaded on the conductive carbon cloth. The effects of several operating parameters including material types, pH, initial concentration of RBk5, and current density on the removal performance of RBk5 were also assessed. The supporting electrolyte was NaCl solution of 1 g L−1. The concentration of RBk5 was detected using an ultraviolet spectrophotometer with a detection wavelength of 600 nm. The optimum parameters of the experiment were GN/TiO2 ratio of 1:4 and pH of 6.6. The removal efficiency of RBk5 could be higher than 95% under an initial concentration of RBk5 of 5 ppm and a current density of 2.5 mA·cm-2 when reaction time was 30 min.


2021 ◽  
Vol 11 (18) ◽  
pp. 8401
Author(s):  
Rachid El Brychy ◽  
Mohamed Moutie Rguiti ◽  
Nadia Rhazzane ◽  
Moulay Driss Mellaoui ◽  
Khalid Abbiche ◽  
...  

Today, organic wastes (paints, pigments, etc.) are considered to be a major concern for the pollution of aqueous environments. Therefore, it is essential to find new methods to solve this problem. This research was conducted to study the use of electrochemical processes to remove organic pollutants (e.g., crystal violet (CV)) from aqueous solutions. The galvanostatic electrolysis of CV by the use of Ti/Pt/SnO2 anode, were conducted in an electrochemical cell with 100 mL of solution using Na2SO4 and NaCl as supporting electrolyte, the effect of the important electrochemical parameters: current density (20–60 mA cm−2), CV concentration (10–50 mg L−1), sodium chloride concentration (0.01–0.1 g L−1) and initial pH (2 to 10) on the efficiency of the electrochemical process was evaluated and optimized. The electrochemical treatment process of CV was monitored by the UV-visible spectrometry and the chemical oxygen demand (COD). After only 120 min, in a 0.01mol L−1 NaCl solution with a current density of 50 mA cm−2 and a pH value of 7 containing 10 mg L−1 CV, the CV removal efficiency can reach 100%, the COD removal efficiency is up to 80%. The process can therefore be considered as a suitable process for removing CV from coloured wastewater in the textile industries.


2013 ◽  
Vol 807-809 ◽  
pp. 1362-1367
Author(s):  
Li Li ◽  
Ying Liu ◽  
Yi Fan Li

This study mostly investigated the influences of electrolytic conditions and the structure of electrospinning nanofibers electrodes on the degradation of methylene blue in details. For PAN and Fe/PAN electrodes, was prepared by electrospinning.It was found that the ESF electrodes with higher specific surface area, and higher mesopore percentage could be push the electrochemical degradation. As the same time, adjusted the initial pH, increased the current, and added to electrolyte also could improve the treatment effect of electrochemical degradation. After 90min of electrolysis, the color removal efficiency of methylene blue reached 97.6% at current with 100mA, supporting electrolyte of NaCl with 0.1mol/L and initial pH with 3~5. Under the same current conditions with the Pt-Fe/PAN anodes the color removal rate of degradation were higher efficiency than the other two anodes.


2011 ◽  
Vol 356-360 ◽  
pp. 1386-1390
Author(s):  
Jun Sheng Hu ◽  
Yue Li ◽  
Hui Wang

By using ACF as the cathode, acid scarlet 3R as simulated wastewater, the experiment researches into the effect of current density, aeration, electrolyte concentration and the initial pH value on the color removal of wastewater. The results showed that: ACF cathode has a strong adsorption capacity. Oxygen is reduced to H2O2 and other oxidizing substances H2O2 on the cathode surface .Therefore, it has a strong degradation capacity to dye, which is far better than that of the stainless steel cathode; Lower operating current density helps reduce processing costs; Higher electrolyte concentration and aeration is not necessarily better, which follows certain rules; The treatment is effected greatly by the initial pH, and the effect of decolonization in the acidic conditions is better than that in alkaline conditions. When the current density is 6Am/cm², electrolyte concentration is 0.04mol•L-1, aeration capacity is 0.2m3/h, initial pH is 3.5 and the time of treatment is 70min, the decolonization rate of wastewater is 95.30 %.


2011 ◽  
Vol 233-235 ◽  
pp. 1916-1919
Author(s):  
Ya Feng Li ◽  
Miao Li ◽  
Yue Xu

Using Ferrate (K2FeO4) and polymer flocculant PAFC (PAFC) Collaborative approach, deal with the Acid Scarlet GR Wastewater. Study the effect of Ferrate dosage, PAFC dosage, Ferrate dosing time, Wastewater initial pH Value. Results show that Ferrate pre-oxidation can significantly improve the Coagulation for the removal of Acid Scarlet GR. when the initial concentration of Acid Scarlet GR is 25mg/L, Ferrate dosage is 90mg,PAFC dosage is 13mL,the removal of Acid Scarlet GR is 95.67%.pH on Ferrate removal of Acid Scarlet GR wastewater has little effect. When pH value is 4-8, the removal rate can reach more than 92%.When pH value is 5.6,the removal rate is the highest.


2014 ◽  
Vol 884-885 ◽  
pp. 29-32
Author(s):  
Hong Ya Li ◽  
Biao Yan ◽  
Bin Xia Zhao ◽  
Xiao Li Zhang

Fe2O3-CeO2/γ-Al2O3 was used as catalyst for treating the dye wastewater by catalytic wet peroxide oxidation method, the effect of reaction temperature, initial pH value of the wastewater, dosage of catalyst and hydrogen peroxide on the COD removal were studied. Results showed that 90.3% of COD removal rate can be obtained under the condition of 90°C, pH=7, 0.8g catalyst/100 mL wasterwater, and 6mL H2O2 /100 mL wasterwater.


2013 ◽  
Vol 726-731 ◽  
pp. 2515-2520 ◽  
Author(s):  
De Min Yang ◽  
Jian Mei Yuan

Advanced treatment of biochemical treated coking wastewater was studied experimentally with ozonation process. The effects of initial pH value, ozone concentration, reaction temperature, and reaction time on the COD and color removal rate were investigated. The results showed that ozonation was an effective method for advanced treatment of biochemical treated coking wastewater. The increasing of initial pH value, ozone concentration, reaction temperature, and reaction time has enhanced the removal rate of COD and color. Meanwhile, the results also revealed that the maximal COD and color removal rate of 69.65% and 92.27% could be reached under the optimal conditions of the initial pH value is 10.5, ozone concentration is 150 mg/L, reaction temperature is 298 K, and reaction time is 30 min.


Sign in / Sign up

Export Citation Format

Share Document